mirror of
https://github.com/mfocko/blog.git
synced 2024-12-23 21:01:29 +01:00
137 lines
No EOL
84 KiB
HTML
137 lines
No EOL
84 KiB
HTML
<!doctype html>
|
||
<html lang="en" dir="ltr" class="docs-wrapper plugin-docs plugin-id-algorithms docs-version-current docs-doc-page docs-doc-id-recursion/2023-08-17-pyramid-slide-down/top-down-dp" data-has-hydrated="false">
|
||
<head>
|
||
<meta charset="UTF-8">
|
||
<meta name="generator" content="Docusaurus v3.0.1">
|
||
<title data-rh="true">Top-down DP solution | mf</title><meta data-rh="true" name="viewport" content="width=device-width,initial-scale=1"><meta data-rh="true" name="twitter:card" content="summary_large_image"><meta data-rh="true" property="og:url" content="https://blog.mfocko.xyz/algorithms/recursion/pyramid-slide-down/top-down-dp/"><meta data-rh="true" property="og:locale" content="en"><meta data-rh="true" name="docusaurus_locale" content="en"><meta data-rh="true" name="docsearch:language" content="en"><meta data-rh="true" name="docusaurus_version" content="current"><meta data-rh="true" name="docusaurus_tag" content="docs-algorithms-current"><meta data-rh="true" name="docsearch:version" content="current"><meta data-rh="true" name="docsearch:docusaurus_tag" content="docs-algorithms-current"><meta data-rh="true" property="og:title" content="Top-down DP solution | mf"><meta data-rh="true" name="description" content="Top-down DP solution of the Pyramid Slide Down.
|
||
"><meta data-rh="true" property="og:description" content="Top-down DP solution of the Pyramid Slide Down.
|
||
"><link data-rh="true" rel="icon" href="/img/favicon.ico"><link data-rh="true" rel="canonical" href="https://blog.mfocko.xyz/algorithms/recursion/pyramid-slide-down/top-down-dp/"><link data-rh="true" rel="alternate" href="https://blog.mfocko.xyz/algorithms/recursion/pyramid-slide-down/top-down-dp/" hreflang="en"><link data-rh="true" rel="alternate" href="https://blog.mfocko.xyz/algorithms/recursion/pyramid-slide-down/top-down-dp/" hreflang="x-default"><link data-rh="true" rel="preconnect" href="https://0VXRFPR4QF-dsn.algolia.net" crossorigin="anonymous"><link rel="search" type="application/opensearchdescription+xml" title="mf" href="/opensearch.xml">
|
||
|
||
|
||
|
||
<link rel="alternate" type="application/rss+xml" href="/blog/rss.xml" title="mf RSS Feed">
|
||
<link rel="alternate" type="application/atom+xml" href="/blog/atom.xml" title="mf Atom Feed">
|
||
<link rel="alternate" type="application/json" href="/blog/feed.json" title="mf JSON Feed">
|
||
|
||
|
||
|
||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.24/dist/katex.min.css" integrity="sha384-odtC+0UGzzFL/6PNoE8rX/SPcQDXBJ+uRepguP4QkPCm2LBxH3FA3y+fKSiJ+AmM" crossorigin="anonymous"><link rel="stylesheet" href="/assets/css/styles.e1ac7597.css">
|
||
<script src="/assets/js/runtime~main.81d405e9.js" defer="defer"></script>
|
||
<script src="/assets/js/main.3450d297.js" defer="defer"></script>
|
||
</head>
|
||
<body class="navigation-with-keyboard">
|
||
<script>!function(){function t(t){document.documentElement.setAttribute("data-theme",t)}var e=function(){try{return new URLSearchParams(window.location.search).get("docusaurus-theme")}catch(t){}}()||function(){try{return localStorage.getItem("theme")}catch(t){}}();t(null!==e?e:"light")}(),function(){try{const c=new URLSearchParams(window.location.search).entries();for(var[t,e]of c)if(t.startsWith("docusaurus-data-")){var a=t.replace("docusaurus-data-","data-");document.documentElement.setAttribute(a,e)}}catch(t){}}()</script><div id="__docusaurus"><div role="region" aria-label="Skip to main content"><a class="skipToContent_fXgn" href="#__docusaurus_skipToContent_fallback">Skip to main content</a></div><nav aria-label="Main" class="navbar navbar--fixed-top"><div class="navbar__inner"><div class="navbar__items"><button aria-label="Toggle navigation bar" aria-expanded="false" class="navbar__toggle clean-btn" type="button"><svg width="30" height="30" viewBox="0 0 30 30" aria-hidden="true"><path stroke="currentColor" stroke-linecap="round" stroke-miterlimit="10" stroke-width="2" d="M4 7h22M4 15h22M4 23h22"></path></svg></button><a class="navbar__brand" href="/"><b class="navbar__title text--truncate">mf</b></a><div class="navbar__item dropdown dropdown--hoverable"><a href="#" aria-haspopup="true" aria-expanded="false" role="button" class="navbar__link">Additional FI MU materials</a><ul class="dropdown__menu"><li><a aria-current="page" class="dropdown__link dropdown__link--active" href="/algorithms/">Algorithms</a></li><li><a class="dropdown__link" href="/c/">C</a></li><li><a class="dropdown__link" href="/cpp/">C++</a></li></ul></div><a class="navbar__item navbar__link" href="/contributions/">Contributions</a><a class="navbar__item navbar__link" href="/talks/">Talks</a></div><div class="navbar__items navbar__items--right"><a class="navbar__item navbar__link" href="/blog/">Blog</a><div class="toggle_vylO colorModeToggle_DEke"><button class="clean-btn toggleButton_gllP toggleButtonDisabled_aARS" type="button" disabled="" title="Switch between dark and light mode (currently light mode)" aria-label="Switch between dark and light mode (currently light mode)" aria-live="polite"><svg viewBox="0 0 24 24" width="24" height="24" class="lightToggleIcon_pyhR"><path fill="currentColor" d="M12,9c1.65,0,3,1.35,3,3s-1.35,3-3,3s-3-1.35-3-3S10.35,9,12,9 M12,7c-2.76,0-5,2.24-5,5s2.24,5,5,5s5-2.24,5-5 S14.76,7,12,7L12,7z M2,13l2,0c0.55,0,1-0.45,1-1s-0.45-1-1-1l-2,0c-0.55,0-1,0.45-1,1S1.45,13,2,13z M20,13l2,0c0.55,0,1-0.45,1-1 s-0.45-1-1-1l-2,0c-0.55,0-1,0.45-1,1S19.45,13,20,13z M11,2v2c0,0.55,0.45,1,1,1s1-0.45,1-1V2c0-0.55-0.45-1-1-1S11,1.45,11,2z M11,20v2c0,0.55,0.45,1,1,1s1-0.45,1-1v-2c0-0.55-0.45-1-1-1C11.45,19,11,19.45,11,20z M5.99,4.58c-0.39-0.39-1.03-0.39-1.41,0 c-0.39,0.39-0.39,1.03,0,1.41l1.06,1.06c0.39,0.39,1.03,0.39,1.41,0s0.39-1.03,0-1.41L5.99,4.58z M18.36,16.95 c-0.39-0.39-1.03-0.39-1.41,0c-0.39,0.39-0.39,1.03,0,1.41l1.06,1.06c0.39,0.39,1.03,0.39,1.41,0c0.39-0.39,0.39-1.03,0-1.41 L18.36,16.95z M19.42,5.99c0.39-0.39,0.39-1.03,0-1.41c-0.39-0.39-1.03-0.39-1.41,0l-1.06,1.06c-0.39,0.39-0.39,1.03,0,1.41 s1.03,0.39,1.41,0L19.42,5.99z M7.05,18.36c0.39-0.39,0.39-1.03,0-1.41c-0.39-0.39-1.03-0.39-1.41,0l-1.06,1.06 c-0.39,0.39-0.39,1.03,0,1.41s1.03,0.39,1.41,0L7.05,18.36z"></path></svg><svg viewBox="0 0 24 24" width="24" height="24" class="darkToggleIcon_wfgR"><path fill="currentColor" d="M9.37,5.51C9.19,6.15,9.1,6.82,9.1,7.5c0,4.08,3.32,7.4,7.4,7.4c0.68,0,1.35-0.09,1.99-0.27C17.45,17.19,14.93,19,12,19 c-3.86,0-7-3.14-7-7C5,9.07,6.81,6.55,9.37,5.51z M12,3c-4.97,0-9,4.03-9,9s4.03,9,9,9s9-4.03,9-9c0-0.46-0.04-0.92-0.1-1.36 c-0.98,1.37-2.58,2.26-4.4,2.26c-2.98,0-5.4-2.42-5.4-5.4c0-1.81,0.89-3.42,2.26-4.4C12.92,3.04,12.46,3,12,3L12,3z"></path></svg></button></div><div class="navbarSearchContainer_Bca1"><button type="button" class="DocSearch DocSearch-Button" aria-label="Search"><span class="DocSearch-Button-Container"><svg width="20" height="20" class="DocSearch-Search-Icon" viewBox="0 0 20 20"><path d="M14.386 14.386l4.0877 4.0877-4.0877-4.0877c-2.9418 2.9419-7.7115 2.9419-10.6533 0-2.9419-2.9418-2.9419-7.7115 0-10.6533 2.9418-2.9419 7.7115-2.9419 10.6533 0 2.9419 2.9418 2.9419 7.7115 0 10.6533z" stroke="currentColor" fill="none" fill-rule="evenodd" stroke-linecap="round" stroke-linejoin="round"></path></svg><span class="DocSearch-Button-Placeholder">Search</span></span><span class="DocSearch-Button-Keys"></span></button></div></div></div><div role="presentation" class="navbar-sidebar__backdrop"></div></nav><div id="__docusaurus_skipToContent_fallback" class="main-wrapper mainWrapper_z2l0"><div class="docsWrapper_hBAB"><button aria-label="Scroll back to top" class="clean-btn theme-back-to-top-button backToTopButton_sjWU" type="button"></button><div class="docRoot_UBD9"><aside class="theme-doc-sidebar-container docSidebarContainer_YfHR"><div class="sidebarViewport_aRkj"><div class="sidebar_njMd"><nav aria-label="Docs sidebar" class="menu thin-scrollbar menu_SIkG"><ul class="theme-doc-sidebar-menu menu__list"><li class="theme-doc-sidebar-item-link theme-doc-sidebar-item-link-level-1 menu__list-item"><a class="menu__link" href="/algorithms/">Introduction</a></li><li class="theme-doc-sidebar-item-category theme-doc-sidebar-item-category-level-1 menu__list-item menu__list-item--collapsed"><div class="menu__list-item-collapsible"><a class="menu__link menu__link--sublist" aria-expanded="false" href="/algorithms/category/algorithms-and-correctness/">Algorithms and Correctness</a><button aria-label="Expand sidebar category 'Algorithms and Correctness'" type="button" class="clean-btn menu__caret"></button></div></li><li class="theme-doc-sidebar-item-category theme-doc-sidebar-item-category-level-1 menu__list-item menu__list-item--collapsed"><div class="menu__list-item-collapsible"><a class="menu__link menu__link--sublist" aria-expanded="false" href="/algorithms/category/asymptotic-notation-and-time-complexity/">Asymptotic Notation and Time Complexity</a><button aria-label="Expand sidebar category 'Asymptotic Notation and Time Complexity'" type="button" class="clean-btn menu__caret"></button></div></li><li class="theme-doc-sidebar-item-category theme-doc-sidebar-item-category-level-1 menu__list-item"><div class="menu__list-item-collapsible"><a class="menu__link menu__link--sublist menu__link--active" aria-expanded="true" href="/algorithms/category/recursion/">Recursion</a><button aria-label="Collapse sidebar category 'Recursion'" type="button" class="clean-btn menu__caret"></button></div><ul style="display:block;overflow:visible;height:auto" class="menu__list"><li class="theme-doc-sidebar-item-category theme-doc-sidebar-item-category-level-2 menu__list-item menu__list-item--collapsed"><div class="menu__list-item-collapsible"><a class="menu__link menu__link--sublist" aria-expanded="false" tabindex="0" href="/algorithms/recursion/karel/">Recursion and backtracking with Robot Karel</a><button aria-label="Expand sidebar category 'Recursion and backtracking with Robot Karel'" type="button" class="clean-btn menu__caret"></button></div></li><li class="theme-doc-sidebar-item-category theme-doc-sidebar-item-category-level-2 menu__list-item"><div class="menu__list-item-collapsible"><a class="menu__link menu__link--sublist menu__link--active" aria-expanded="true" tabindex="0" href="/algorithms/recursion/pyramid-slide-down/">Introduction to dynamic programming</a><button aria-label="Collapse sidebar category 'Introduction to dynamic programming'" type="button" class="clean-btn menu__caret"></button></div><ul style="display:block;overflow:visible;height:auto" class="menu__list"><li class="theme-doc-sidebar-item-link theme-doc-sidebar-item-link-level-3 menu__list-item"><a class="menu__link" tabindex="0" href="/algorithms/recursion/pyramid-slide-down/naive/">Naïve solution</a></li><li class="theme-doc-sidebar-item-link theme-doc-sidebar-item-link-level-3 menu__list-item"><a class="menu__link" tabindex="0" href="/algorithms/recursion/pyramid-slide-down/greedy/">Greedy solution</a></li><li class="theme-doc-sidebar-item-link theme-doc-sidebar-item-link-level-3 menu__list-item"><a class="menu__link menu__link--active" aria-current="page" tabindex="0" href="/algorithms/recursion/pyramid-slide-down/top-down-dp/">Top-down DP solution</a></li><li class="theme-doc-sidebar-item-link theme-doc-sidebar-item-link-level-3 menu__list-item"><a class="menu__link" tabindex="0" href="/algorithms/recursion/pyramid-slide-down/bottom-up-dp/">Bottom-up DP solution</a></li></ul></li></ul></li><li class="theme-doc-sidebar-item-category theme-doc-sidebar-item-category-level-1 menu__list-item menu__list-item--collapsed"><div class="menu__list-item-collapsible"><a class="menu__link menu__link--sublist" aria-expanded="false" href="/algorithms/category/red-black-trees/">Red-Black Trees</a><button aria-label="Expand sidebar category 'Red-Black Trees'" type="button" class="clean-btn menu__caret"></button></div></li><li class="theme-doc-sidebar-item-category theme-doc-sidebar-item-category-level-1 menu__list-item menu__list-item--collapsed"><div class="menu__list-item-collapsible"><a class="menu__link menu__link--sublist" aria-expanded="false" href="/algorithms/category/graphs/">Graphs</a><button aria-label="Expand sidebar category 'Graphs'" type="button" class="clean-btn menu__caret"></button></div></li><li class="theme-doc-sidebar-item-category theme-doc-sidebar-item-category-level-1 menu__list-item menu__list-item--collapsed"><div class="menu__list-item-collapsible"><a class="menu__link menu__link--sublist" aria-expanded="false" href="/algorithms/category/hash-tables/">Hash Tables</a><button aria-label="Expand sidebar category 'Hash Tables'" type="button" class="clean-btn menu__caret"></button></div></li></ul></nav><button type="button" title="Collapse sidebar" aria-label="Collapse sidebar" class="button button--secondary button--outline collapseSidebarButton_PEFL"><svg width="20" height="20" aria-hidden="true" class="collapseSidebarButtonIcon_kv0_"><g fill="#7a7a7a"><path d="M9.992 10.023c0 .2-.062.399-.172.547l-4.996 7.492a.982.982 0 01-.828.454H1c-.55 0-1-.453-1-1 0-.2.059-.403.168-.551l4.629-6.942L.168 3.078A.939.939 0 010 2.528c0-.548.45-.997 1-.997h2.996c.352 0 .649.18.828.45L9.82 9.472c.11.148.172.347.172.55zm0 0"></path><path d="M19.98 10.023c0 .2-.058.399-.168.547l-4.996 7.492a.987.987 0 01-.828.454h-3c-.547 0-.996-.453-.996-1 0-.2.059-.403.168-.551l4.625-6.942-4.625-6.945a.939.939 0 01-.168-.55 1 1 0 01.996-.997h3c.348 0 .649.18.828.45l4.996 7.492c.11.148.168.347.168.55zm0 0"></path></g></svg></button></div></div></aside><main class="docMainContainer_TBSr"><div class="container padding-top--md padding-bottom--lg"><div class="row"><div class="col docItemCol_VOVn"><div class="docItemContainer_Djhp"><article><nav class="theme-doc-breadcrumbs breadcrumbsContainer_Z_bl" aria-label="Breadcrumbs"><ul class="breadcrumbs" itemscope="" itemtype="https://schema.org/BreadcrumbList"><li class="breadcrumbs__item"><a aria-label="Home page" class="breadcrumbs__link" href="/"><svg viewBox="0 0 24 24" class="breadcrumbHomeIcon_YNFT"><path d="M10 19v-5h4v5c0 .55.45 1 1 1h3c.55 0 1-.45 1-1v-7h1.7c.46 0 .68-.57.33-.87L12.67 3.6c-.38-.34-.96-.34-1.34 0l-8.36 7.53c-.34.3-.13.87.33.87H5v7c0 .55.45 1 1 1h3c.55 0 1-.45 1-1z" fill="currentColor"></path></svg></a></li><li itemscope="" itemprop="itemListElement" itemtype="https://schema.org/ListItem" class="breadcrumbs__item"><a class="breadcrumbs__link" itemprop="item" href="/algorithms/category/recursion/"><span itemprop="name">Recursion</span></a><meta itemprop="position" content="1"></li><li itemscope="" itemprop="itemListElement" itemtype="https://schema.org/ListItem" class="breadcrumbs__item"><a class="breadcrumbs__link" itemprop="item" href="/algorithms/recursion/pyramid-slide-down/"><span itemprop="name">Introduction to dynamic programming</span></a><meta itemprop="position" content="2"></li><li itemscope="" itemprop="itemListElement" itemtype="https://schema.org/ListItem" class="breadcrumbs__item breadcrumbs__item--active"><span class="breadcrumbs__link" itemprop="name">Top-down DP solution</span><meta itemprop="position" content="3"></li></ul></nav><div class="tocCollapsible_ETCw theme-doc-toc-mobile tocMobile_ITEo"><button type="button" class="clean-btn tocCollapsibleButton_TO0P">On this page</button></div><div class="theme-doc-markdown markdown"><h1>Top-down dynamic programming</h1>
|
||
<p><em>Top-down dynamic programming</em> is probably the most common approach, since (at
|
||
least looks like) is the easiest to implement. The whole point is avoiding the
|
||
unnecessary computations that we have already done.</p>
|
||
<p>In our case, we can use our naïve solution and put a <em>cache</em> on top of it that
|
||
will make sure, we don't do unnecessary calculations.</p>
|
||
<div class="language-java codeBlockContainer_Ckt0 theme-code-block" style="--prism-color:#393A34;--prism-background-color:#f6f8fa"><div class="codeBlockContent_biex"><pre tabindex="0" class="prism-code language-java codeBlock_bY9V thin-scrollbar" style="color:#393A34;background-color:#f6f8fa"><code class="codeBlockLines_e6Vv"><span class="token-line" style="color:#393A34"><span class="token comment" style="color:#999988;font-style:italic">// This “structure” is required, since I have decided to use ‹TreeMap› which</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"></span><span class="token comment" style="color:#999988;font-style:italic">// requires the ordering on the keys. It represents one position in the pyramid.</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"></span><span class="token keyword" style="color:#00009f">record</span><span class="token plain"> </span><span class="token class-name">Position</span><span class="token punctuation" style="color:#393A34">(</span><span class="token keyword" style="color:#00009f">int</span><span class="token plain"> row</span><span class="token punctuation" style="color:#393A34">,</span><span class="token plain"> </span><span class="token keyword" style="color:#00009f">int</span><span class="token plain"> col</span><span class="token punctuation" style="color:#393A34">)</span><span class="token plain"> </span><span class="token keyword" style="color:#00009f">implements</span><span class="token plain"> </span><span class="token class-name">Comparable</span><span class="token generics punctuation" style="color:#393A34"><</span><span class="token generics class-name">Position</span><span class="token generics punctuation" style="color:#393A34">></span><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">{</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token keyword" style="color:#00009f">public</span><span class="token plain"> </span><span class="token keyword" style="color:#00009f">int</span><span class="token plain"> </span><span class="token function" style="color:#d73a49">compareTo</span><span class="token punctuation" style="color:#393A34">(</span><span class="token class-name">Position</span><span class="token plain"> r</span><span class="token punctuation" style="color:#393A34">)</span><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">{</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token keyword" style="color:#00009f">if</span><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">(</span><span class="token plain">row </span><span class="token operator" style="color:#393A34">!=</span><span class="token plain"> r</span><span class="token punctuation" style="color:#393A34">.</span><span class="token plain">row</span><span class="token punctuation" style="color:#393A34">)</span><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">{</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token keyword" style="color:#00009f">return</span><span class="token plain"> </span><span class="token class-name">Integer</span><span class="token punctuation" style="color:#393A34">.</span><span class="token function" style="color:#d73a49">valueOf</span><span class="token punctuation" style="color:#393A34">(</span><span class="token plain">row</span><span class="token punctuation" style="color:#393A34">)</span><span class="token punctuation" style="color:#393A34">.</span><span class="token function" style="color:#d73a49">compareTo</span><span class="token punctuation" style="color:#393A34">(</span><span class="token plain">r</span><span class="token punctuation" style="color:#393A34">.</span><span class="token plain">row</span><span class="token punctuation" style="color:#393A34">)</span><span class="token punctuation" style="color:#393A34">;</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">}</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain" style="display:inline-block"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token keyword" style="color:#00009f">if</span><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">(</span><span class="token plain">col </span><span class="token operator" style="color:#393A34">!=</span><span class="token plain"> r</span><span class="token punctuation" style="color:#393A34">.</span><span class="token plain">col</span><span class="token punctuation" style="color:#393A34">)</span><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">{</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token keyword" style="color:#00009f">return</span><span class="token plain"> </span><span class="token class-name">Integer</span><span class="token punctuation" style="color:#393A34">.</span><span class="token function" style="color:#d73a49">valueOf</span><span class="token punctuation" style="color:#393A34">(</span><span class="token plain">col</span><span class="token punctuation" style="color:#393A34">)</span><span class="token punctuation" style="color:#393A34">.</span><span class="token function" style="color:#d73a49">compareTo</span><span class="token punctuation" style="color:#393A34">(</span><span class="token plain">r</span><span class="token punctuation" style="color:#393A34">.</span><span class="token plain">col</span><span class="token punctuation" style="color:#393A34">)</span><span class="token punctuation" style="color:#393A34">;</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">}</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain" style="display:inline-block"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token keyword" style="color:#00009f">return</span><span class="token plain"> </span><span class="token number" style="color:#36acaa">0</span><span class="token punctuation" style="color:#393A34">;</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">}</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"></span><span class="token punctuation" style="color:#393A34">}</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain" style="display:inline-block"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"></span><span class="token keyword" style="color:#00009f">public</span><span class="token plain"> </span><span class="token keyword" style="color:#00009f">static</span><span class="token plain"> </span><span class="token keyword" style="color:#00009f">int</span><span class="token plain"> </span><span class="token function" style="color:#d73a49">longestSlideDown</span><span class="token punctuation" style="color:#393A34">(</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token keyword" style="color:#00009f">int</span><span class="token punctuation" style="color:#393A34">[</span><span class="token punctuation" style="color:#393A34">]</span><span class="token punctuation" style="color:#393A34">[</span><span class="token punctuation" style="color:#393A34">]</span><span class="token plain"> pyramid</span><span class="token punctuation" style="color:#393A34">,</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token class-name">TreeMap</span><span class="token generics punctuation" style="color:#393A34"><</span><span class="token generics class-name">Position</span><span class="token generics punctuation" style="color:#393A34">,</span><span class="token generics"> </span><span class="token generics class-name">Integer</span><span class="token generics punctuation" style="color:#393A34">></span><span class="token plain"> cache</span><span class="token punctuation" style="color:#393A34">,</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token class-name">Position</span><span class="token plain"> position</span><span class="token punctuation" style="color:#393A34">)</span><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">{</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token keyword" style="color:#00009f">int</span><span class="token plain"> row </span><span class="token operator" style="color:#393A34">=</span><span class="token plain"> position</span><span class="token punctuation" style="color:#393A34">.</span><span class="token plain">row</span><span class="token punctuation" style="color:#393A34">;</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token keyword" style="color:#00009f">int</span><span class="token plain"> col </span><span class="token operator" style="color:#393A34">=</span><span class="token plain"> position</span><span class="token punctuation" style="color:#393A34">.</span><span class="token plain">col</span><span class="token punctuation" style="color:#393A34">;</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain" style="display:inline-block"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token keyword" style="color:#00009f">if</span><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">(</span><span class="token plain">row </span><span class="token operator" style="color:#393A34">>=</span><span class="token plain"> pyramid</span><span class="token punctuation" style="color:#393A34">.</span><span class="token plain">length </span><span class="token operator" style="color:#393A34">||</span><span class="token plain"> col </span><span class="token operator" style="color:#393A34"><</span><span class="token plain"> </span><span class="token number" style="color:#36acaa">0</span><span class="token plain"> </span><span class="token operator" style="color:#393A34">||</span><span class="token plain"> col </span><span class="token operator" style="color:#393A34">>=</span><span class="token plain"> pyramid</span><span class="token punctuation" style="color:#393A34">[</span><span class="token plain">row</span><span class="token punctuation" style="color:#393A34">]</span><span class="token punctuation" style="color:#393A34">.</span><span class="token plain">length</span><span class="token punctuation" style="color:#393A34">)</span><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">{</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token comment" style="color:#999988;font-style:italic">// BASE: out of bounds</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token keyword" style="color:#00009f">return</span><span class="token plain"> </span><span class="token class-name">Integer</span><span class="token punctuation" style="color:#393A34">.</span><span class="token constant" style="color:#36acaa">MIN_VALUE</span><span class="token punctuation" style="color:#393A34">;</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">}</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain" style="display:inline-block"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token keyword" style="color:#00009f">if</span><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">(</span><span class="token plain">row </span><span class="token operator" style="color:#393A34">==</span><span class="token plain"> pyramid</span><span class="token punctuation" style="color:#393A34">.</span><span class="token plain">length </span><span class="token operator" style="color:#393A34">-</span><span class="token plain"> </span><span class="token number" style="color:#36acaa">1</span><span class="token punctuation" style="color:#393A34">)</span><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">{</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token comment" style="color:#999988;font-style:italic">// BASE: bottom of the pyramid</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token keyword" style="color:#00009f">return</span><span class="token plain"> pyramid</span><span class="token punctuation" style="color:#393A34">[</span><span class="token plain">position</span><span class="token punctuation" style="color:#393A34">.</span><span class="token plain">row</span><span class="token punctuation" style="color:#393A34">]</span><span class="token punctuation" style="color:#393A34">[</span><span class="token plain">position</span><span class="token punctuation" style="color:#393A34">.</span><span class="token plain">col</span><span class="token punctuation" style="color:#393A34">]</span><span class="token punctuation" style="color:#393A34">;</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">}</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain" style="display:inline-block"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token keyword" style="color:#00009f">if</span><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">(</span><span class="token operator" style="color:#393A34">!</span><span class="token plain">cache</span><span class="token punctuation" style="color:#393A34">.</span><span class="token function" style="color:#d73a49">containsKey</span><span class="token punctuation" style="color:#393A34">(</span><span class="token plain">position</span><span class="token punctuation" style="color:#393A34">)</span><span class="token punctuation" style="color:#393A34">)</span><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">{</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token comment" style="color:#999988;font-style:italic">// We haven't computed the position yet, so we run the same “formula” as</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token comment" style="color:#999988;font-style:italic">// in the naïve version »and« we put calculated slide into the cache.</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token comment" style="color:#999988;font-style:italic">// Next time we want the slide down from given position, it will be just</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token comment" style="color:#999988;font-style:italic">// retrieved from the cache.</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token keyword" style="color:#00009f">int</span><span class="token plain"> slideDown </span><span class="token operator" style="color:#393A34">=</span><span class="token plain"> </span><span class="token class-name">Math</span><span class="token punctuation" style="color:#393A34">.</span><span class="token function" style="color:#d73a49">max</span><span class="token punctuation" style="color:#393A34">(</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token function" style="color:#d73a49">longestSlideDown</span><span class="token punctuation" style="color:#393A34">(</span><span class="token plain">pyramid</span><span class="token punctuation" style="color:#393A34">,</span><span class="token plain"> cache</span><span class="token punctuation" style="color:#393A34">,</span><span class="token plain"> </span><span class="token keyword" style="color:#00009f">new</span><span class="token plain"> </span><span class="token class-name">Position</span><span class="token punctuation" style="color:#393A34">(</span><span class="token plain">row </span><span class="token operator" style="color:#393A34">+</span><span class="token plain"> </span><span class="token number" style="color:#36acaa">1</span><span class="token punctuation" style="color:#393A34">,</span><span class="token plain"> col</span><span class="token punctuation" style="color:#393A34">)</span><span class="token punctuation" style="color:#393A34">)</span><span class="token punctuation" style="color:#393A34">,</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token function" style="color:#d73a49">longestSlideDown</span><span class="token punctuation" style="color:#393A34">(</span><span class="token plain">pyramid</span><span class="token punctuation" style="color:#393A34">,</span><span class="token plain"> cache</span><span class="token punctuation" style="color:#393A34">,</span><span class="token plain"> </span><span class="token keyword" style="color:#00009f">new</span><span class="token plain"> </span><span class="token class-name">Position</span><span class="token punctuation" style="color:#393A34">(</span><span class="token plain">row </span><span class="token operator" style="color:#393A34">+</span><span class="token plain"> </span><span class="token number" style="color:#36acaa">1</span><span class="token punctuation" style="color:#393A34">,</span><span class="token plain"> col </span><span class="token operator" style="color:#393A34">+</span><span class="token plain"> </span><span class="token number" style="color:#36acaa">1</span><span class="token punctuation" style="color:#393A34">)</span><span class="token punctuation" style="color:#393A34">)</span><span class="token punctuation" style="color:#393A34">)</span><span class="token punctuation" style="color:#393A34">;</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> cache</span><span class="token punctuation" style="color:#393A34">.</span><span class="token function" style="color:#d73a49">put</span><span class="token punctuation" style="color:#393A34">(</span><span class="token plain">position</span><span class="token punctuation" style="color:#393A34">,</span><span class="token plain"> pyramid</span><span class="token punctuation" style="color:#393A34">[</span><span class="token plain">row</span><span class="token punctuation" style="color:#393A34">]</span><span class="token punctuation" style="color:#393A34">[</span><span class="token plain">col</span><span class="token punctuation" style="color:#393A34">]</span><span class="token plain"> </span><span class="token operator" style="color:#393A34">+</span><span class="token plain"> slideDown</span><span class="token punctuation" style="color:#393A34">)</span><span class="token punctuation" style="color:#393A34">;</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">}</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain" style="display:inline-block"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token keyword" style="color:#00009f">return</span><span class="token plain"> cache</span><span class="token punctuation" style="color:#393A34">.</span><span class="token function" style="color:#d73a49">get</span><span class="token punctuation" style="color:#393A34">(</span><span class="token plain">position</span><span class="token punctuation" style="color:#393A34">)</span><span class="token punctuation" style="color:#393A34">;</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"></span><span class="token punctuation" style="color:#393A34">}</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain" style="display:inline-block"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"></span><span class="token keyword" style="color:#00009f">public</span><span class="token plain"> </span><span class="token keyword" style="color:#00009f">static</span><span class="token plain"> </span><span class="token keyword" style="color:#00009f">int</span><span class="token plain"> </span><span class="token function" style="color:#d73a49">longestSlideDown</span><span class="token punctuation" style="color:#393A34">(</span><span class="token keyword" style="color:#00009f">int</span><span class="token punctuation" style="color:#393A34">[</span><span class="token punctuation" style="color:#393A34">]</span><span class="token punctuation" style="color:#393A34">[</span><span class="token punctuation" style="color:#393A34">]</span><span class="token plain"> pyramid</span><span class="token punctuation" style="color:#393A34">)</span><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">{</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token comment" style="color:#999988;font-style:italic">// At the beginning we need to create a cache and share it across the calls.</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token class-name">TreeMap</span><span class="token generics punctuation" style="color:#393A34"><</span><span class="token generics class-name">Position</span><span class="token generics punctuation" style="color:#393A34">,</span><span class="token generics"> </span><span class="token generics class-name">Integer</span><span class="token generics punctuation" style="color:#393A34">></span><span class="token plain"> cache </span><span class="token operator" style="color:#393A34">=</span><span class="token plain"> </span><span class="token keyword" style="color:#00009f">new</span><span class="token plain"> </span><span class="token class-name">TreeMap</span><span class="token generics punctuation" style="color:#393A34"><</span><span class="token generics punctuation" style="color:#393A34">></span><span class="token punctuation" style="color:#393A34">(</span><span class="token punctuation" style="color:#393A34">)</span><span class="token punctuation" style="color:#393A34">;</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token keyword" style="color:#00009f">return</span><span class="token plain"> </span><span class="token function" style="color:#d73a49">longestSlideDown</span><span class="token punctuation" style="color:#393A34">(</span><span class="token plain">pyramid</span><span class="token punctuation" style="color:#393A34">,</span><span class="token plain"> cache</span><span class="token punctuation" style="color:#393A34">,</span><span class="token plain"> </span><span class="token keyword" style="color:#00009f">new</span><span class="token plain"> </span><span class="token class-name">Position</span><span class="token punctuation" style="color:#393A34">(</span><span class="token number" style="color:#36acaa">0</span><span class="token punctuation" style="color:#393A34">,</span><span class="token plain"> </span><span class="token number" style="color:#36acaa">0</span><span class="token punctuation" style="color:#393A34">)</span><span class="token punctuation" style="color:#393A34">)</span><span class="token punctuation" style="color:#393A34">;</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"></span><span class="token punctuation" style="color:#393A34">}</span><br></span></code></pre><div class="buttonGroup__atx"><button type="button" aria-label="Copy code to clipboard" title="Copy" class="clean-btn"><span class="copyButtonIcons_eSgA" aria-hidden="true"><svg viewBox="0 0 24 24" class="copyButtonIcon_y97N"><path fill="currentColor" d="M19,21H8V7H19M19,5H8A2,2 0 0,0 6,7V21A2,2 0 0,0 8,23H19A2,2 0 0,0 21,21V7A2,2 0 0,0 19,5M16,1H4A2,2 0 0,0 2,3V17H4V3H16V1Z"></path></svg><svg viewBox="0 0 24 24" class="copyButtonSuccessIcon_LjdS"><path fill="currentColor" d="M21,7L9,19L3.5,13.5L4.91,12.09L9,16.17L19.59,5.59L21,7Z"></path></svg></span></button></div></div></div>
|
||
<p>You have probably noticed that <code>record Position</code> have appeared. Since we are
|
||
caching the already computed values, we need a “reasonable” key. In this case we
|
||
share the cache only for one <em>run</em> (i.e. pyramid) of the <code>longestSlideDown</code>, so
|
||
we can cache just with the indices within the pyramid, i.e. the <code>Position</code>.</p>
|
||
<div class="theme-admonition theme-admonition-tip admonition_xJq3 alert alert--success"><div class="admonitionHeading_Gvgb"><span class="admonitionIcon_Rf37"><svg viewBox="0 0 12 16"><path fill-rule="evenodd" d="M6.5 0C3.48 0 1 2.19 1 5c0 .92.55 2.25 1 3 1.34 2.25 1.78 2.78 2 4v1h5v-1c.22-1.22.66-1.75 2-4 .45-.75 1-2.08 1-3 0-2.81-2.48-5-5.5-5zm3.64 7.48c-.25.44-.47.8-.67 1.11-.86 1.41-1.25 2.06-1.45 3.23-.02.05-.02.11-.02.17H5c0-.06 0-.13-.02-.17-.2-1.17-.59-1.83-1.45-3.23-.2-.31-.42-.67-.67-1.11C2.44 6.78 2 5.65 2 5c0-2.2 2.02-4 4.5-4 1.22 0 2.36.42 3.22 1.19C10.55 2.94 11 3.94 11 5c0 .66-.44 1.78-.86 2.48zM4 14h5c-.23 1.14-1.3 2-2.5 2s-2.27-.86-2.5-2z"></path></svg></span>Record</div><div class="admonitionContent_BuS1"><p><em>Record</em> is relatively new addition to the Java language. It is basically an
|
||
immutable structure with implicitly defined <code>.equals()</code>, <code>.hashCode()</code>,
|
||
<code>.toString()</code> and getters for the attributes.</p></div></div>
|
||
<p>Because of the choice of <code>TreeMap</code>, we had to additionally define the ordering
|
||
on it.</p>
|
||
<p>In the <code>longestSlideDown</code> you can notice that the computation which used to be
|
||
at the end of the naïve version above, is now wrapped in an <code>if</code> statement that
|
||
checks for the presence of the position in the cache and computes the slide down
|
||
just when it's needed.</p>
|
||
<h2 class="anchor anchorWithStickyNavbar_LWe7" id="time-complexity">Time complexity<a href="#time-complexity" class="hash-link" aria-label="Direct link to Time complexity" title="Direct link to Time complexity"></a></h2>
|
||
<p>If you think that evaluating time complexity for this approach is a bit more
|
||
tricky, you are right. Keeping the cache in mind, it is not the easiest thing
|
||
to do. However there are some observations that might help us figure this out:</p>
|
||
<ol>
|
||
<li>Slide down from each position is calculated only once.</li>
|
||
<li>Once calculated, we use the result from the cache.</li>
|
||
</ol>
|
||
<p>Knowing this, we still cannot, at least easily, describe the time complexity of
|
||
finding the best slide down from a specific position, <strong>but</strong> we can bound it
|
||
from above for the <strong>whole</strong> run from the top. Now the question is how we can do
|
||
that!</p>
|
||
<p>Overall we are doing the same things for almost<sup><a href="#user-content-fn-1" id="user-content-fnref-1" data-footnote-ref="true" aria-describedby="footnote-label">1</a></sup> all of the positions within
|
||
the pyramid:</p>
|
||
<ol>
|
||
<li>
|
||
<p>We calculate and store it (using the partial results stored in cache). This
|
||
is done only once.</p>
|
||
<p>For each calculation we take 2 values from the cache and insert one value.
|
||
Because we have chosen <code>TreeMap</code>, these 3 operations have logarithmic time
|
||
complexity and therefore this step is equivalent to <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mo>⋅</mo><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>n</mi></mrow><annotation encoding="application/x-tex">3 \cdot \log_2{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span></span><span class="base"><span class="strut" style="height:0.9386em;vertical-align:-0.2441em"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em"><span style="top:-2.4559em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span></span></span></span>.</p>
|
||
<p>However for the sake of simplicity, we are going to account only for the
|
||
insertion, the reason is rather simple, if we include the 2 retrievals here,
|
||
it will be interleaved with the next step, therefore it is easier to keep the
|
||
retrievals in the following point.</p>
|
||
<div class="theme-admonition theme-admonition-caution admonition_xJq3 alert alert--warning"><div class="admonitionHeading_Gvgb"><span class="admonitionIcon_Rf37"><svg viewBox="0 0 16 16"><path fill-rule="evenodd" d="M8.893 1.5c-.183-.31-.52-.5-.887-.5s-.703.19-.886.5L.138 13.499a.98.98 0 0 0 0 1.001c.193.31.53.501.886.501h13.964c.367 0 .704-.19.877-.5a1.03 1.03 0 0 0 .01-1.002L8.893 1.5zm.133 11.497H6.987v-2.003h2.039v2.003zm0-3.004H6.987V5.987h2.039v4.006z"></path></svg></span>caution</div><div class="admonitionContent_BuS1"><p>You might have noticed it's still not that easy, cause we're not having full
|
||
cache right from the beginning, but the sum of those logarithms cannot be
|
||
expressed in a nice way, so taking the upper bound, i.e. expecting the cache
|
||
to be full at all times, is the best option for nice and readable complexity
|
||
of the whole approach.</p></div></div>
|
||
<p>Our final upper bound of this work is therefore <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>n</mi></mrow><annotation encoding="application/x-tex">\log_2{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9386em;vertical-align:-0.2441em"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em"><span style="top:-2.4559em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span></span></span></span>.</p>
|
||
</li>
|
||
<li>
|
||
<p>We retrieve it from the cache. Same as in first point, but only twice, so we
|
||
get <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mo>⋅</mo><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>n</mi></mrow><annotation encoding="application/x-tex">2 \cdot \log_2{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span></span><span class="base"><span class="strut" style="height:0.9386em;vertical-align:-0.2441em"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em"><span style="top:-2.4559em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span></span></span></span>.</p>
|
||
<div class="theme-admonition theme-admonition-caution admonition_xJq3 alert alert--warning"><div class="admonitionHeading_Gvgb"><span class="admonitionIcon_Rf37"><svg viewBox="0 0 16 16"><path fill-rule="evenodd" d="M8.893 1.5c-.183-.31-.52-.5-.887-.5s-.703.19-.886.5L.138 13.499a.98.98 0 0 0 0 1.001c.193.31.53.501.886.501h13.964c.367 0 .704-.19.877-.5a1.03 1.03 0 0 0 .01-1.002L8.893 1.5zm.133 11.497H6.987v-2.003h2.039v2.003zm0-3.004H6.987V5.987h2.039v4.006z"></path></svg></span>caution</div><div class="admonitionContent_BuS1"><p>It's done twice because of the <code>.containsKey()</code> in the <code>if</code> condition.</p></div></div>
|
||
</li>
|
||
</ol>
|
||
<p>Okay, we have evaluated work done for each of the cells in the pyramid and now
|
||
we need to put it together.</p>
|
||
<p>Let's split the time complexity of our solution into two operands:</p>
|
||
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><mi>r</mi><mo>+</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{O}(r + s)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mord mathcal" style="margin-right:0.02778em">O</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.02778em">r</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mord mathnormal">s</span><span class="mclose">)</span></span></span></span></span>
|
||
<p><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi></mrow><annotation encoding="application/x-tex">r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em"></span><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span></span></span> will represent the <em>actual</em> calculation of the cells and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>s</mi></mrow><annotation encoding="application/x-tex">s</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em"></span><span class="mord mathnormal">s</span></span></span></span> will represent
|
||
the additional retrievals on top of the calculation.</p>
|
||
<p>We calculate the values only <strong>once</strong>, therefore we can safely agree on:</p>
|
||
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>r</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>n</mi><mo>⋅</mo><mi>log</mi><mo></mo><mi>n</mi></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
r &= n \cdot \log{n} \\
|
||
\end{align*}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.5em;vertical-align:-0.5em"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1em"><span style="top:-3.16em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5em"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1em"><span style="top:-3.16em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5em"><span></span></span></span></span></span></span></span></span></span></span></span>
|
||
<p>What about the <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>s</mi></mrow><annotation encoding="application/x-tex">s</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em"></span><span class="mord mathnormal">s</span></span></span></span> though? Key observation here is the fact that we have 2
|
||
lookups on the tree in each of them <strong>and</strong> we do it twice, cause each cell has
|
||
at most 2 parents:</p>
|
||
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>s</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>n</mi><mo>⋅</mo><mn>2</mn><mo>⋅</mo><mrow><mo fence="true">(</mo><mn>2</mn><mo>⋅</mo><mi>log</mi><mo></mo><mi>n</mi><mo fence="true">)</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>s</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>4</mn><mo>⋅</mo><mi>n</mi><mo>⋅</mo><mi>log</mi><mo></mo><mi>n</mi></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
s &= n \cdot 2 \cdot \left( 2 \cdot \log{n} \right) \\
|
||
s &= 4 \cdot n \cdot \log{n}
|
||
\end{align*}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3em;vertical-align:-1.25em"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.75em"><span style="top:-3.91em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathnormal">s</span></span></span><span style="top:-2.41em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathnormal">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.25em"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.75em"><span style="top:-3.91em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span><span class="minner"><span class="mopen delimcenter" style="top:0em">(</span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span><span class="mclose delimcenter" style="top:0em">)</span></span></span></span><span style="top:-2.41em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em"></span><span class="mord">4</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.25em"><span></span></span></span></span></span></span></span></span></span></span></span>
|
||
<div class="theme-admonition theme-admonition-tip admonition_xJq3 alert alert--success"><div class="admonitionHeading_Gvgb"><span class="admonitionIcon_Rf37"><svg viewBox="0 0 12 16"><path fill-rule="evenodd" d="M6.5 0C3.48 0 1 2.19 1 5c0 .92.55 2.25 1 3 1.34 2.25 1.78 2.78 2 4v1h5v-1c.22-1.22.66-1.75 2-4 .45-.75 1-2.08 1-3 0-2.81-2.48-5-5.5-5zm3.64 7.48c-.25.44-.47.8-.67 1.11-.86 1.41-1.25 2.06-1.45 3.23-.02.05-.02.11-.02.17H5c0-.06 0-.13-.02-.17-.2-1.17-.59-1.83-1.45-3.23-.2-.31-.42-.67-.67-1.11C2.44 6.78 2 5.65 2 5c0-2.2 2.02-4 4.5-4 1.22 0 2.36.42 3.22 1.19C10.55 2.94 11 3.94 11 5c0 .66-.44 1.78-.86 2.48zM4 14h5c-.23 1.14-1.3 2-2.5 2s-2.27-.86-2.5-2z"></path></svg></span>tip</div><div class="admonitionContent_BuS1"><p>You might've noticed that lookups actually take more time than the construction
|
||
of the results. This is not entirely true, since we have included the
|
||
<code>.containsKey()</code> and <code>.get()</code> from the <code>return</code> statement in the second part.</p><p>If we were to represent this more precisely, we could've gone with:</p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>r</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>3</mn><mo>⋅</mo><mi>n</mi><mo>⋅</mo><mi>log</mi><mo></mo><mi>n</mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>s</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><mo>⋅</mo><mi>n</mi><mo>⋅</mo><mi>log</mi><mo></mo><mi>n</mi></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||
r &= 3 \cdot n \cdot \log{n} \\
|
||
s &= 2 \cdot n \cdot \log{n}
|
||
\end{align*}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3em;vertical-align:-1.25em"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.75em"><span style="top:-3.91em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span></span><span style="top:-2.41em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathnormal">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.25em"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.75em"><span style="top:-3.91em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span></span></span><span style="top:-2.41em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.25em"><span></span></span></span></span></span></span></span></span></span></span></span><p>On the other hand we are summing both numbers together, therefore in the end it
|
||
doesn't really matter.</p><p>(<em>Feel free to compare the sums of both “splits”.</em>)</p></div></div>
|
||
<p>And so our final time complexity for the whole <em>top-down dynamic programming</em>
|
||
approach is:</p>
|
||
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><mi>r</mi><mo>+</mo><mi>s</mi><mo stretchy="false">)</mo><mspace linebreak="newline"></mspace><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><mi>n</mi><mo>⋅</mo><mi>log</mi><mo></mo><mi>n</mi><mo>+</mo><mn>4</mn><mo>⋅</mo><mi>n</mi><mo>⋅</mo><mi>log</mi><mo></mo><mi>n</mi><mo stretchy="false">)</mo><mspace linebreak="newline"></mspace><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><mn>5</mn><mo>⋅</mo><mi>n</mi><mo>⋅</mo><mi>log</mi><mo></mo><mi>n</mi><mo stretchy="false">)</mo><mspace linebreak="newline"></mspace><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><mi>n</mi><mo>⋅</mo><mi>log</mi><mo></mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{O}(r + s) \\
|
||
\mathcal{O}(n \cdot \log{n} + 4 \cdot n \cdot \log{n}) \\
|
||
\mathcal{O}(5 \cdot n \cdot \log{n}) \\
|
||
\mathcal{O}(n \cdot \log{n})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mord mathcal" style="margin-right:0.02778em">O</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.02778em">r</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mord mathnormal">s</span><span class="mclose">)</span></span><span class="mspace newline"></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mord mathcal" style="margin-right:0.02778em">O</span><span class="mopen">(</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em"></span><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em"></span></span><span class="base"><span class="strut" style="height:0.6444em"></span><span class="mord">4</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span></span><span class="base"><span class="strut" style="height:0.4445em"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span><span class="mclose">)</span></span><span class="mspace newline"></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mord mathcal" style="margin-right:0.02778em">O</span><span class="mopen">(</span><span class="mord">5</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span></span><span class="base"><span class="strut" style="height:0.4445em"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span><span class="mclose">)</span></span><span class="mspace newline"></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mord mathcal" style="margin-right:0.02778em">O</span><span class="mopen">(</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span><span class="mclose">)</span></span></span></span></span>
|
||
<p>As you can see, this is worse than our <em>greedy</em> solution that was incorrect, but
|
||
it's better than the <em>naïve</em> one.</p>
|
||
<h2 class="anchor anchorWithStickyNavbar_LWe7" id="memory-complexity">Memory complexity<a href="#memory-complexity" class="hash-link" aria-label="Direct link to Memory complexity" title="Direct link to Memory complexity"></a></h2>
|
||
<p>With this approach we need to talk about the memory complexity too, because we
|
||
have introduced cache. If you think that the memory complexity is linear to the
|
||
input, you are right. We start at the top and try to find each and every slide
|
||
down. At the end we get the final result for <code>new Position(0, 0)</code>, so we need to
|
||
compute everything below.</p>
|
||
<p>That's how we obtain:</p>
|
||
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{O}(n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mord mathcal" style="margin-right:0.02778em">O</span><span class="mopen">(</span><span class="mord mathnormal">n</span><span class="mclose">)</span></span></span></span></span>
|
||
<p><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em"></span><span class="mord mathnormal">n</span></span></span></span> represents the total amount of cells in the pyramid, i.e.</p>
|
||
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munderover><mo>∑</mo><mrow><mi>y</mi><mo>=</mo><mn>0</mn></mrow><mrow><mrow><mi mathvariant="monospace">p</mi><mi mathvariant="monospace">y</mi><mi mathvariant="monospace">r</mi><mi mathvariant="monospace">a</mi><mi mathvariant="monospace">m</mi><mi mathvariant="monospace">i</mi><mi mathvariant="monospace">d</mi><mi mathvariant="monospace">.</mi><mi mathvariant="monospace">l</mi><mi mathvariant="monospace">e</mi><mi mathvariant="monospace">n</mi><mi mathvariant="monospace">g</mi><mi mathvariant="monospace">t</mi><mi mathvariant="monospace">h</mi></mrow><mo>−</mo><mn>1</mn></mrow></munderover><mrow><mi mathvariant="monospace">p</mi><mi mathvariant="monospace">y</mi><mi mathvariant="monospace">r</mi><mi mathvariant="monospace">a</mi><mi mathvariant="monospace">m</mi><mi mathvariant="monospace">i</mi><mi mathvariant="monospace">d</mi></mrow><mrow><mo fence="true">[</mo><mi>y</mi><mo fence="true">]</mo></mrow><mrow><mi mathvariant="monospace">.</mi><mi mathvariant="monospace">l</mi><mi mathvariant="monospace">e</mi><mi mathvariant="monospace">n</mi><mi mathvariant="monospace">g</mi><mi mathvariant="monospace">t</mi><mi mathvariant="monospace">h</mi></mrow></mrow><annotation encoding="application/x-tex">\sum_{y=0}^{\mathtt{pyramid.length} - 1} \mathtt{pyramid}\left[y\right]\mathtt{.length}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.2709em;vertical-align:-1.4032em"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8677em"><span style="top:-1.8829em;margin-left:0em"><span class="pstrut" style="height:3.05em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em">y</span><span class="mrel mtight">=</span><span class="mord mtight">0</span></span></span></span><span style="top:-3.05em"><span class="pstrut" style="height:3.05em"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3666em;margin-left:0em"><span class="pstrut" style="height:3.05em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathtt mtight">pyramid.length</span></span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.4032em"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathtt">pyramid</span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="minner"><span class="mopen delimcenter" style="top:0em">[</span><span class="mord mathnormal" style="margin-right:0.03588em">y</span><span class="mclose delimcenter" style="top:0em">]</span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathtt">.length</span></span></span></span></span></span>
|
||
<div class="theme-admonition theme-admonition-caution admonition_xJq3 alert alert--warning"><div class="admonitionHeading_Gvgb"><span class="admonitionIcon_Rf37"><svg viewBox="0 0 16 16"><path fill-rule="evenodd" d="M8.893 1.5c-.183-.31-.52-.5-.887-.5s-.703.19-.886.5L.138 13.499a.98.98 0 0 0 0 1.001c.193.31.53.501.886.501h13.964c.367 0 .704-.19.877-.5a1.03 1.03 0 0 0 .01-1.002L8.893 1.5zm.133 11.497H6.987v-2.003h2.039v2.003zm0-3.004H6.987V5.987h2.039v4.006z"></path></svg></span>caution</div><div class="admonitionContent_BuS1"><p>If you're wondering whether it's correct because of the second <code>if</code> in our
|
||
function, your guess is right. However we are expressing the complexity in the
|
||
Bachmann-Landau notation, so we care about the <strong>upper bound</strong>, not the exact
|
||
number.</p></div></div>
|
||
<div class="theme-admonition theme-admonition-tip admonition_xJq3 alert alert--success"><div class="admonitionHeading_Gvgb"><span class="admonitionIcon_Rf37"><svg viewBox="0 0 12 16"><path fill-rule="evenodd" d="M6.5 0C3.48 0 1 2.19 1 5c0 .92.55 2.25 1 3 1.34 2.25 1.78 2.78 2 4v1h5v-1c.22-1.22.66-1.75 2-4 .45-.75 1-2.08 1-3 0-2.81-2.48-5-5.5-5zm3.64 7.48c-.25.44-.47.8-.67 1.11-.86 1.41-1.25 2.06-1.45 3.23-.02.05-.02.11-.02.17H5c0-.06 0-.13-.02-.17-.2-1.17-.59-1.83-1.45-3.23-.2-.31-.42-.67-.67-1.11C2.44 6.78 2 5.65 2 5c0-2.2 2.02-4 4.5-4 1.22 0 2.36.42 3.22 1.19C10.55 2.94 11 3.94 11 5c0 .66-.44 1.78-.86 2.48zM4 14h5c-.23 1.14-1.3 2-2.5 2s-2.27-.86-2.5-2z"></path></svg></span>Can this be optimized?</div><div class="admonitionContent_BuS1"><p>Yes, it can! Try to think about a way, how can you minimize the memory
|
||
complexity of this approach. I'll give you a hint:</p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><mi>r</mi><mi>o</mi><mi>w</mi><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{O}(rows)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mord mathcal" style="margin-right:0.02778em">O</span><span class="mopen">(</span><span class="mord mathnormal">ro</span><span class="mord mathnormal" style="margin-right:0.02691em">w</span><span class="mord mathnormal">s</span><span class="mclose">)</span></span></span></span></span></div></div>
|
||
<section data-footnotes="true" class="footnotes"><h2 class="anchor anchorWithStickyNavbar_LWe7 sr-only" id="footnote-label">Footnotes<a href="#footnote-label" class="hash-link" aria-label="Direct link to Footnotes" title="Direct link to Footnotes"></a></h2>
|
||
<ol>
|
||
<li id="user-content-fn-1">
|
||
<p>except the bottom row <a href="#user-content-fnref-1" data-footnote-backref="" aria-label="Back to reference 1" class="data-footnote-backref">↩</a></p>
|
||
</li>
|
||
</ol>
|
||
</section></div><footer class="theme-doc-footer docusaurus-mt-lg"><div class="theme-doc-footer-tags-row row margin-bottom--sm"><div class="col"><b>Tags:</b><ul class="tags_jXut padding--none margin-left--sm"><li class="tag_QGVx"><a class="tag_zVej tagRegular_sFm0" href="/algorithms/tags/java/">java</a></li><li class="tag_QGVx"><a class="tag_zVej tagRegular_sFm0" href="/algorithms/tags/dynamic-programming/">dynamic-programming</a></li><li class="tag_QGVx"><a class="tag_zVej tagRegular_sFm0" href="/algorithms/tags/top-down-dp/">top-down-dp</a></li></ul></div></div><div class="theme-doc-footer-edit-meta-row row"><div class="col"><a href="https://github.com/mfocko/blog/tree/main/algorithms/04-recursion/2023-08-17-pyramid-slide-down/03-top-down-dp.md" target="_blank" rel="noopener noreferrer" class="theme-edit-this-page"><svg fill="currentColor" height="20" width="20" viewBox="0 0 40 40" class="iconEdit_Z9Sw" aria-hidden="true"><g><path d="m34.5 11.7l-3 3.1-6.3-6.3 3.1-3q0.5-0.5 1.2-0.5t1.1 0.5l3.9 3.9q0.5 0.4 0.5 1.1t-0.5 1.2z m-29.5 17.1l18.4-18.5 6.3 6.3-18.4 18.4h-6.3v-6.2z"></path></g></svg>Edit this page</a></div><div class="col lastUpdated_vwxv"><span class="theme-last-updated">Last updated<!-- --> on <b><time datetime="2023-08-17T00:00:00.000Z">Aug 17, 2023</time></b></span></div></div></footer></article><nav class="pagination-nav docusaurus-mt-lg" aria-label="Docs pages"><a class="pagination-nav__link pagination-nav__link--prev" href="/algorithms/recursion/pyramid-slide-down/greedy/"><div class="pagination-nav__sublabel">Previous</div><div class="pagination-nav__label">Greedy solution</div></a><a class="pagination-nav__link pagination-nav__link--next" href="/algorithms/recursion/pyramid-slide-down/bottom-up-dp/"><div class="pagination-nav__sublabel">Next</div><div class="pagination-nav__label">Bottom-up DP solution</div></a></nav></div></div><div class="col col--3"><div class="tableOfContents_bqdL thin-scrollbar theme-doc-toc-desktop"><ul class="table-of-contents table-of-contents__left-border"><li><a href="#time-complexity" class="table-of-contents__link toc-highlight">Time complexity</a></li><li><a href="#memory-complexity" class="table-of-contents__link toc-highlight">Memory complexity</a></li></ul></div></div></div></div></main></div></div></div><footer class="footer footer--dark"><div class="container container-fluid"><div class="row footer__links"><div class="col footer__col"><div class="footer__title">Git</div><ul class="footer__items clean-list"><li class="footer__item"><a href="https://github.com/mfocko" target="_blank" rel="noopener noreferrer" class="footer__link-item">GitHub<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li><li class="footer__item"><a href="https://gitlab.com/mfocko" target="_blank" rel="noopener noreferrer" class="footer__link-item">GitLab<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li><li class="footer__item"><a href="https://git.mfocko.xyz/mfocko" target="_blank" rel="noopener noreferrer" class="footer__link-item">Gitea (self-hosted)<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li></ul></div><div class="col footer__col"><div class="footer__title">Social #1</div><ul class="footer__items clean-list"><li class="footer__item"><a href="https://www.linkedin.com/in/mfocko/" target="_blank" rel="noopener noreferrer" class="footer__link-item">LinkedIn<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li><li class="footer__item"><a href="https://fosstodon.org/@m4tt_314" target="_blank" rel="noopener noreferrer" class="footer__link-item">Fosstodon<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li><li class="footer__item"><a href="https://hachyderm.io/@m4tt_314" target="_blank" rel="noopener noreferrer" class="footer__link-item">Hachyderm.io<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li></ul></div><div class="col footer__col"><div class="footer__title">Social #2</div><ul class="footer__items clean-list"><li class="footer__item"><a href="https://twitter.com/m4tt_314" target="_blank" rel="noopener noreferrer" class="footer__link-item">Twitter<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li><li class="footer__item"><a href="https://twitch.tv/m4tt_314" target="_blank" rel="noopener noreferrer" class="footer__link-item">Twitch<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li><li class="footer__item"><a href="https://ko-fi.com/m4tt_314" target="_blank" rel="noopener noreferrer" class="footer__link-item">Ko-fi<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li></ul></div></div><div class="footer__bottom text--center"><div class="footer__copyright">Copyright © 2023 Matej Focko.</div></div></div></footer></div>
|
||
</body>
|
||
</html> |