mirror of
https://github.com/mfocko/blog.git
synced 2024-12-23 12:51:30 +01:00
31 lines
No EOL
82 KiB
HTML
31 lines
No EOL
82 KiB
HTML
<!doctype html>
|
||
<html lang="en" dir="ltr" class="docs-wrapper docs-doc-page docs-version-current plugin-docs plugin-id-ib002 docs-doc-id-graphs/bfs-tree">
|
||
<head>
|
||
<meta charset="UTF-8">
|
||
<meta name="generator" content="Docusaurus v2.4.1">
|
||
<title data-rh="true">Distance boundaries from BFS tree on undirected graphs | mf</title><meta data-rh="true" name="viewport" content="width=device-width,initial-scale=1"><meta data-rh="true" name="twitter:card" content="summary_large_image"><meta data-rh="true" property="og:url" content="https://blog.mfocko.xyz/ib002/graphs/bfs-tree/"><meta data-rh="true" name="docusaurus_locale" content="en"><meta data-rh="true" name="docsearch:language" content="en"><meta data-rh="true" name="docusaurus_version" content="current"><meta data-rh="true" name="docusaurus_tag" content="docs-ib002-current"><meta data-rh="true" name="docsearch:version" content="current"><meta data-rh="true" name="docsearch:docusaurus_tag" content="docs-ib002-current"><meta data-rh="true" property="og:title" content="Distance boundaries from BFS tree on undirected graphs | mf"><meta data-rh="true" name="description" content="Short explanation of distance boundaries deduced from a BFS tree.
|
||
"><meta data-rh="true" property="og:description" content="Short explanation of distance boundaries deduced from a BFS tree.
|
||
"><link data-rh="true" rel="icon" href="/img/favicon.ico"><link data-rh="true" rel="canonical" href="https://blog.mfocko.xyz/ib002/graphs/bfs-tree/"><link data-rh="true" rel="alternate" href="https://blog.mfocko.xyz/ib002/graphs/bfs-tree/" hreflang="en"><link data-rh="true" rel="alternate" href="https://blog.mfocko.xyz/ib002/graphs/bfs-tree/" hreflang="x-default"><link data-rh="true" rel="preconnect" href="https://0VXRFPR4QF-dsn.algolia.net" crossorigin="anonymous"><link rel="search" type="application/opensearchdescription+xml" title="mf" href="/opensearch.xml">
|
||
|
||
|
||
|
||
<link rel="alternate" type="application/rss+xml" href="/blog/rss.xml" title="mf RSS Feed">
|
||
<link rel="alternate" type="application/atom+xml" href="/blog/atom.xml" title="mf Atom Feed">
|
||
<link rel="alternate" type="application/json" href="/blog/feed.json" title="mf JSON Feed">
|
||
|
||
|
||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.24/dist/katex.min.css" integrity="sha384-odtC+0UGzzFL/6PNoE8rX/SPcQDXBJ+uRepguP4QkPCm2LBxH3FA3y+fKSiJ+AmM" crossorigin="anonymous"><link rel="stylesheet" href="/assets/css/styles.8480cb83.css">
|
||
<link rel="preload" href="/assets/js/runtime~main.aac6ed28.js" as="script">
|
||
<link rel="preload" href="/assets/js/main.a28961b3.js" as="script">
|
||
</head>
|
||
<body class="navigation-with-keyboard">
|
||
<script>!function(){function t(t){document.documentElement.setAttribute("data-theme",t)}var e=function(){var t=null;try{t=new URLSearchParams(window.location.search).get("docusaurus-theme")}catch(t){}return t}()||function(){var t=null;try{t=localStorage.getItem("theme")}catch(t){}return t}();t(null!==e?e:"light")}()</script><div id="__docusaurus">
|
||
<div role="region" aria-label="Skip to main content"><a class="skipToContent_fXgn" href="#__docusaurus_skipToContent_fallback">Skip to main content</a></div><nav aria-label="Main" class="navbar navbar--fixed-top"><div class="navbar__inner"><div class="navbar__items"><button aria-label="Toggle navigation bar" aria-expanded="false" class="navbar__toggle clean-btn" type="button"><svg width="30" height="30" viewBox="0 0 30 30" aria-hidden="true"><path stroke="currentColor" stroke-linecap="round" stroke-miterlimit="10" stroke-width="2" d="M4 7h22M4 15h22M4 23h22"></path></svg></button><a class="navbar__brand" href="/"><b class="navbar__title text--truncate">mf</b></a><div class="navbar__item dropdown dropdown--hoverable"><a href="#" aria-haspopup="true" aria-expanded="false" role="button" class="navbar__link">Additional FI MU materials</a><ul class="dropdown__menu"><li><a aria-current="page" class="dropdown__link dropdown__link--active" href="/ib002/">IB002: Algorithms</a></li><li><a class="dropdown__link" href="/pb071/">PB071: C</a></li><li><a class="dropdown__link" href="/pb161/">PB161: C++</a></li></ul></div><a class="navbar__item navbar__link" href="/contributions/">Contributions</a><a class="navbar__item navbar__link" href="/talks/">Talks</a></div><div class="navbar__items navbar__items--right"><a class="navbar__item navbar__link" href="/blog/">Blog</a><div class="toggle_vylO colorModeToggle_DEke"><button class="clean-btn toggleButton_gllP toggleButtonDisabled_aARS" type="button" disabled="" title="Switch between dark and light mode (currently light mode)" aria-label="Switch between dark and light mode (currently light mode)" aria-live="polite"><svg viewBox="0 0 24 24" width="24" height="24" class="lightToggleIcon_pyhR"><path fill="currentColor" d="M12,9c1.65,0,3,1.35,3,3s-1.35,3-3,3s-3-1.35-3-3S10.35,9,12,9 M12,7c-2.76,0-5,2.24-5,5s2.24,5,5,5s5-2.24,5-5 S14.76,7,12,7L12,7z M2,13l2,0c0.55,0,1-0.45,1-1s-0.45-1-1-1l-2,0c-0.55,0-1,0.45-1,1S1.45,13,2,13z M20,13l2,0c0.55,0,1-0.45,1-1 s-0.45-1-1-1l-2,0c-0.55,0-1,0.45-1,1S19.45,13,20,13z M11,2v2c0,0.55,0.45,1,1,1s1-0.45,1-1V2c0-0.55-0.45-1-1-1S11,1.45,11,2z M11,20v2c0,0.55,0.45,1,1,1s1-0.45,1-1v-2c0-0.55-0.45-1-1-1C11.45,19,11,19.45,11,20z M5.99,4.58c-0.39-0.39-1.03-0.39-1.41,0 c-0.39,0.39-0.39,1.03,0,1.41l1.06,1.06c0.39,0.39,1.03,0.39,1.41,0s0.39-1.03,0-1.41L5.99,4.58z M18.36,16.95 c-0.39-0.39-1.03-0.39-1.41,0c-0.39,0.39-0.39,1.03,0,1.41l1.06,1.06c0.39,0.39,1.03,0.39,1.41,0c0.39-0.39,0.39-1.03,0-1.41 L18.36,16.95z M19.42,5.99c0.39-0.39,0.39-1.03,0-1.41c-0.39-0.39-1.03-0.39-1.41,0l-1.06,1.06c-0.39,0.39-0.39,1.03,0,1.41 s1.03,0.39,1.41,0L19.42,5.99z M7.05,18.36c0.39-0.39,0.39-1.03,0-1.41c-0.39-0.39-1.03-0.39-1.41,0l-1.06,1.06 c-0.39,0.39-0.39,1.03,0,1.41s1.03,0.39,1.41,0L7.05,18.36z"></path></svg><svg viewBox="0 0 24 24" width="24" height="24" class="darkToggleIcon_wfgR"><path fill="currentColor" d="M9.37,5.51C9.19,6.15,9.1,6.82,9.1,7.5c0,4.08,3.32,7.4,7.4,7.4c0.68,0,1.35-0.09,1.99-0.27C17.45,17.19,14.93,19,12,19 c-3.86,0-7-3.14-7-7C5,9.07,6.81,6.55,9.37,5.51z M12,3c-4.97,0-9,4.03-9,9s4.03,9,9,9s9-4.03,9-9c0-0.46-0.04-0.92-0.1-1.36 c-0.98,1.37-2.58,2.26-4.4,2.26c-2.98,0-5.4-2.42-5.4-5.4c0-1.81,0.89-3.42,2.26-4.4C12.92,3.04,12.46,3,12,3L12,3z"></path></svg></button></div><div class="searchBox_ZlJk"><button type="button" class="DocSearch DocSearch-Button" aria-label="Search"><span class="DocSearch-Button-Container"><svg width="20" height="20" class="DocSearch-Search-Icon" viewBox="0 0 20 20"><path d="M14.386 14.386l4.0877 4.0877-4.0877-4.0877c-2.9418 2.9419-7.7115 2.9419-10.6533 0-2.9419-2.9418-2.9419-7.7115 0-10.6533 2.9418-2.9419 7.7115-2.9419 10.6533 0 2.9419 2.9418 2.9419 7.7115 0 10.6533z" stroke="currentColor" fill="none" fill-rule="evenodd" stroke-linecap="round" stroke-linejoin="round"></path></svg><span class="DocSearch-Button-Placeholder">Search</span></span><span class="DocSearch-Button-Keys"></span></button></div></div></div><div role="presentation" class="navbar-sidebar__backdrop"></div></nav><div id="__docusaurus_skipToContent_fallback" class="main-wrapper mainWrapper_z2l0 docsWrapper_BCFX"><button aria-label="Scroll back to top" class="clean-btn theme-back-to-top-button backToTopButton_sjWU" type="button"></button><div class="docPage__5DB"><aside class="theme-doc-sidebar-container docSidebarContainer_b6E3"><div class="sidebarViewport_Xe31"><div class="sidebar_njMd"><nav aria-label="Docs sidebar" class="menu thin-scrollbar menu_SIkG"><ul class="theme-doc-sidebar-menu menu__list"><li class="theme-doc-sidebar-item-link theme-doc-sidebar-item-link-level-1 menu__list-item"><a class="menu__link" href="/ib002/">Introduction</a></li><li class="theme-doc-sidebar-item-category theme-doc-sidebar-item-category-level-1 menu__list-item menu__list-item--collapsed"><div class="menu__list-item-collapsible"><a class="menu__link menu__link--sublist" aria-expanded="false" href="/ib002/category/algorithms-and-correctness/">Algorithms and Correctness</a><button aria-label="Toggle the collapsible sidebar category 'Algorithms and Correctness'" type="button" class="clean-btn menu__caret"></button></div></li><li class="theme-doc-sidebar-item-category theme-doc-sidebar-item-category-level-1 menu__list-item menu__list-item--collapsed"><div class="menu__list-item-collapsible"><a class="menu__link menu__link--sublist" aria-expanded="false" href="/ib002/category/asymptotic-notation-and-time-complexity/">Asymptotic Notation and Time Complexity</a><button aria-label="Toggle the collapsible sidebar category 'Asymptotic Notation and Time Complexity'" type="button" class="clean-btn menu__caret"></button></div></li><li class="theme-doc-sidebar-item-category theme-doc-sidebar-item-category-level-1 menu__list-item menu__list-item--collapsed"><div class="menu__list-item-collapsible"><a class="menu__link menu__link--sublist" aria-expanded="false" href="/ib002/category/recursion/">Recursion</a><button aria-label="Toggle the collapsible sidebar category 'Recursion'" type="button" class="clean-btn menu__caret"></button></div></li><li class="theme-doc-sidebar-item-category theme-doc-sidebar-item-category-level-1 menu__list-item menu__list-item--collapsed"><div class="menu__list-item-collapsible"><a class="menu__link menu__link--sublist" aria-expanded="false" href="/ib002/category/red-black-trees/">Red-Black Trees</a><button aria-label="Toggle the collapsible sidebar category 'Red-Black Trees'" type="button" class="clean-btn menu__caret"></button></div></li><li class="theme-doc-sidebar-item-category theme-doc-sidebar-item-category-level-1 menu__list-item"><div class="menu__list-item-collapsible"><a class="menu__link menu__link--sublist menu__link--active" aria-expanded="true" href="/ib002/category/graphs/">Graphs</a><button aria-label="Toggle the collapsible sidebar category 'Graphs'" type="button" class="clean-btn menu__caret"></button></div><ul style="display:block;overflow:visible;height:auto" class="menu__list"><li class="theme-doc-sidebar-item-link theme-doc-sidebar-item-link-level-2 menu__list-item"><a class="menu__link" tabindex="0" href="/ib002/graphs/iterative-and-iterators/">Iterative algorithms via iterators</a></li><li class="theme-doc-sidebar-item-link theme-doc-sidebar-item-link-level-2 menu__list-item"><a class="menu__link menu__link--active" aria-current="page" tabindex="0" href="/ib002/graphs/bfs-tree/">Distance boundaries from BFS tree on undirected graphs</a></li></ul></li></ul></nav><button type="button" title="Collapse sidebar" aria-label="Collapse sidebar" class="button button--secondary button--outline collapseSidebarButton_PEFL"><svg width="20" height="20" aria-hidden="true" class="collapseSidebarButtonIcon_kv0_"><g fill="#7a7a7a"><path d="M9.992 10.023c0 .2-.062.399-.172.547l-4.996 7.492a.982.982 0 01-.828.454H1c-.55 0-1-.453-1-1 0-.2.059-.403.168-.551l4.629-6.942L.168 3.078A.939.939 0 010 2.528c0-.548.45-.997 1-.997h2.996c.352 0 .649.18.828.45L9.82 9.472c.11.148.172.347.172.55zm0 0"></path><path d="M19.98 10.023c0 .2-.058.399-.168.547l-4.996 7.492a.987.987 0 01-.828.454h-3c-.547 0-.996-.453-.996-1 0-.2.059-.403.168-.551l4.625-6.942-4.625-6.945a.939.939 0 01-.168-.55 1 1 0 01.996-.997h3c.348 0 .649.18.828.45l4.996 7.492c.11.148.168.347.168.55zm0 0"></path></g></svg></button></div></div></aside><main class="docMainContainer_gTbr"><div class="container padding-top--md padding-bottom--lg"><div class="row"><div class="col docItemCol_VOVn"><div class="docItemContainer_Djhp"><article><nav class="theme-doc-breadcrumbs breadcrumbsContainer_Z_bl" aria-label="Breadcrumbs"><ul class="breadcrumbs" itemscope="" itemtype="https://schema.org/BreadcrumbList"><li class="breadcrumbs__item"><a aria-label="Home page" class="breadcrumbs__link" href="/"><svg viewBox="0 0 24 24" class="breadcrumbHomeIcon_YNFT"><path d="M10 19v-5h4v5c0 .55.45 1 1 1h3c.55 0 1-.45 1-1v-7h1.7c.46 0 .68-.57.33-.87L12.67 3.6c-.38-.34-.96-.34-1.34 0l-8.36 7.53c-.34.3-.13.87.33.87H5v7c0 .55.45 1 1 1h3c.55 0 1-.45 1-1z" fill="currentColor"></path></svg></a></li><li itemscope="" itemprop="itemListElement" itemtype="https://schema.org/ListItem" class="breadcrumbs__item"><a class="breadcrumbs__link" itemprop="item" href="/ib002/category/graphs/"><span itemprop="name">Graphs</span></a><meta itemprop="position" content="1"></li><li itemscope="" itemprop="itemListElement" itemtype="https://schema.org/ListItem" class="breadcrumbs__item breadcrumbs__item--active"><span class="breadcrumbs__link" itemprop="name">Distance boundaries from BFS tree on undirected graphs</span><meta itemprop="position" content="2"></li></ul></nav><div class="tocCollapsible_ETCw theme-doc-toc-mobile tocMobile_ITEo"><button type="button" class="clean-btn tocCollapsibleButton_TO0P">On this page</button></div><div class="theme-doc-markdown markdown"><header><h1>Distance boundaries from BFS tree on undirected graphs</h1></header><h2 class="anchor anchorWithStickyNavbar_LWe7" id="introduction">Introduction<a href="#introduction" class="hash-link" aria-label="Direct link to Introduction" title="Direct link to Introduction"></a></h2><p>As we have talked on the seminar, if we construct from some vertex <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi></mrow><annotation encoding="application/x-tex">u</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em"></span><span class="mord mathnormal">u</span></span></span></span></span> BFS tree on an undirected graph, we can obtain:</p><ul><li>lower bound of length of the shortest path between 2 vertices from the <em>height difference</em></li><li>upper bound of length of the shortest path between 2 vertices from the <em>path through the root</em></li></ul><h2 class="anchor anchorWithStickyNavbar_LWe7" id="lower-bound">Lower bound<a href="#lower-bound" class="hash-link" aria-label="Direct link to Lower bound" title="Direct link to Lower bound"></a></h2><p>Consider the following graph:</p><p><img loading="lazy" src="#gh-light-mode-only" width="252" height="539" class="img_ev3q">
|
||
<img loading="lazy" src="#gh-dark-mode-only" width="252" height="539" class="img_ev3q"></p><p>We run BFS from the vertex <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em"></span><span class="mord mathnormal">a</span></span></span></span></span> and obtain the following BFS tree:</p><p><img loading="lazy" src="#gh-light-mode-only" width="275" height="347" class="img_ev3q">
|
||
<img loading="lazy" src="#gh-dark-mode-only" width="275" height="347" class="img_ev3q"></p><p>Let's consider pair of vertices <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>e</mi></mrow><annotation encoding="application/x-tex">e</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em"></span><span class="mord mathnormal">e</span></span></span></span></span> and <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>h</mi></mrow><annotation encoding="application/x-tex">h</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em"></span><span class="mord mathnormal">h</span></span></span></span></span>. For them we can safely lay, from the BFS tree, following properties:</p><ul><li>lower bound: <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn></mrow><annotation encoding="application/x-tex">2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em"></span><span class="mord">2</span></span></span></span></span></li><li>upper bound: <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4</mn></mrow><annotation encoding="application/x-tex">4</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em"></span><span class="mord">4</span></span></span></span></span></li></ul><p>By having a look at the graph we started from, we can see that we have a path ‹<span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>e</mi><mo separator="true">,</mo><mi>j</mi><mo separator="true">,</mo><mi>h</mi></mrow><annotation encoding="application/x-tex">e, j, h</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em"></span><span class="mord mathnormal">e</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord mathnormal" style="margin-right:0.05724em">j</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord mathnormal">h</span></span></span></span></span>› that has a length 2. Apart from that we can also notice there is another path from <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>e</mi></mrow><annotation encoding="application/x-tex">e</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em"></span><span class="mord mathnormal">e</span></span></span></span></span> to <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>h</mi></mrow><annotation encoding="application/x-tex">h</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em"></span><span class="mord mathnormal">h</span></span></span></span></span> and that is ‹<span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>e</mi><mo separator="true">,</mo><mi>a</mi><mo separator="true">,</mo><mi>c</mi><mo separator="true">,</mo><mi>i</mi><mo separator="true">,</mo><mi>d</mi><mo separator="true">,</mo><mi>h</mi></mrow><annotation encoding="application/x-tex">e, a, c, i, d, h</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em"></span><span class="mord mathnormal">e</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord mathnormal">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord mathnormal">c</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord mathnormal">i</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord mathnormal">d</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord mathnormal">h</span></span></span></span></span>›. And that path has a length of <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5</mn></mrow><annotation encoding="application/x-tex">5</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em"></span><span class="mord">5</span></span></span></span></span>. Doesn't this break our statements at the beginning? (<em>I'm leaving that as an exercise ;)</em>)</p><h2 class="anchor anchorWithStickyNavbar_LWe7" id="proof-by-contradiction">Proof by contradiction<a href="#proof-by-contradiction" class="hash-link" aria-label="Direct link to Proof by contradiction" title="Direct link to Proof by contradiction"></a></h2><p>Let's keep the same graph, but break the lower bound, i.e. I have gotten a lower bound <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn></mrow><annotation encoding="application/x-tex">2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em"></span><span class="mord">2</span></span></span></span></span>, but “there must be a shorter path”! ;)</p><p>Now the more important question, is there a shorter path in that graph? The answer is no, there's no shorter path than the one with length <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn></mrow><annotation encoding="application/x-tex">2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em"></span><span class="mord">2</span></span></span></span></span>. So what can we do about it? We'll add an edge to have a shorter path. Now we have gotten a lower bound of <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn></mrow><annotation encoding="application/x-tex">2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em"></span><span class="mord">2</span></span></span></span></span>, which means the only shorter path we can construct has <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn></mrow><annotation encoding="application/x-tex">1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em"></span><span class="mord">1</span></span></span></span></span> edge and that is ‹<span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>e</mi><mo separator="true">,</mo><mi>h</mi></mrow><annotation encoding="application/x-tex">e, h</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em"></span><span class="mord mathnormal">e</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord mathnormal">h</span></span></span></span></span>› (no intermediary vertices). Let's do this!</p><p><img loading="lazy" src="#gh-light-mode-only" width="252" height="539" class="img_ev3q">
|
||
<img loading="lazy" src="#gh-dark-mode-only" width="252" height="539" class="img_ev3q"></p><p>Okay, so we have a graph that breaks the rule we have laid. However, we need to run BFS to obtain the new BFS tree, since we have changed the graph.</p><div class="theme-admonition theme-admonition-tip alert alert--success admonition_LlT9"><div class="admonitionHeading_tbUL"><span class="admonitionIcon_kALy"><svg viewBox="0 0 12 16"><path fill-rule="evenodd" d="M6.5 0C3.48 0 1 2.19 1 5c0 .92.55 2.25 1 3 1.34 2.25 1.78 2.78 2 4v1h5v-1c.22-1.22.66-1.75 2-4 .45-.75 1-2.08 1-3 0-2.81-2.48-5-5.5-5zm3.64 7.48c-.25.44-.47.8-.67 1.11-.86 1.41-1.25 2.06-1.45 3.23-.02.05-.02.11-.02.17H5c0-.06 0-.13-.02-.17-.2-1.17-.59-1.83-1.45-3.23-.2-.31-.42-.67-.67-1.11C2.44 6.78 2 5.65 2 5c0-2.2 2.02-4 4.5-4 1.22 0 2.36.42 3.22 1.19C10.55 2.94 11 3.94 11 5c0 .66-.44 1.78-.86 2.48zM4 14h5c-.23 1.14-1.3 2-2.5 2s-2.27-.86-2.5-2z"></path></svg></span>tip</div><div class="admonitionContent_S0QG"><p>Do we need to run BFS after <strong>every</strong> change?</p><p>I am leaving that as an exercise ;)</p></div></div><p><img loading="lazy" src="#gh-light-mode-only" width="371" height="347" class="img_ev3q">
|
||
<img loading="lazy" src="#gh-dark-mode-only" width="371" height="347" class="img_ev3q"></p><p>Oops, we have gotten a new BFS tree, that has a height difference of 1.</p><div class="theme-admonition theme-admonition-tip alert alert--success admonition_LlT9"><div class="admonitionHeading_tbUL"><span class="admonitionIcon_kALy"><svg viewBox="0 0 12 16"><path fill-rule="evenodd" d="M6.5 0C3.48 0 1 2.19 1 5c0 .92.55 2.25 1 3 1.34 2.25 1.78 2.78 2 4v1h5v-1c.22-1.22.66-1.75 2-4 .45-.75 1-2.08 1-3 0-2.81-2.48-5-5.5-5zm3.64 7.48c-.25.44-.47.8-.67 1.11-.86 1.41-1.25 2.06-1.45 3.23-.02.05-.02.11-.02.17H5c0-.06 0-.13-.02-.17-.2-1.17-.59-1.83-1.45-3.23-.2-.31-.42-.67-.67-1.11C2.44 6.78 2 5.65 2 5c0-2.2 2.02-4 4.5-4 1.22 0 2.36.42 3.22 1.19C10.55 2.94 11 3.94 11 5c0 .66-.44 1.78-.86 2.48zM4 14h5c-.23 1.14-1.3 2-2.5 2s-2.27-.86-2.5-2z"></path></svg></span>tip</div><div class="admonitionContent_S0QG"><p>Try to think about a way this can be generalized for shortening of minimal length 3 to minimal length 2 ;)</p></div></div></div><footer class="theme-doc-footer docusaurus-mt-lg"><div class="theme-doc-footer-tags-row row margin-bottom--sm"><div class="col"><b>Tags:</b><ul class="tags_jXut padding--none margin-left--sm"><li class="tag_QGVx"><a class="tag_zVej tagRegular_sFm0" href="/ib002/tags/graphs/">graphs</a></li><li class="tag_QGVx"><a class="tag_zVej tagRegular_sFm0" href="/ib002/tags/bfs/">bfs</a></li></ul></div></div><div class="theme-doc-footer-edit-meta-row row"><div class="col"><a href="https://github.com/mfocko/blog/tree/main/ib002/10-graphs/2022-04-30-bfs-tree.md" target="_blank" rel="noreferrer noopener" class="theme-edit-this-page"><svg fill="currentColor" height="20" width="20" viewBox="0 0 40 40" class="iconEdit_Z9Sw" aria-hidden="true"><g><path d="m34.5 11.7l-3 3.1-6.3-6.3 3.1-3q0.5-0.5 1.2-0.5t1.1 0.5l3.9 3.9q0.5 0.4 0.5 1.1t-0.5 1.2z m-29.5 17.1l18.4-18.5 6.3 6.3-18.4 18.4h-6.3v-6.2z"></path></g></svg>Edit this page</a></div><div class="col lastUpdated_vwxv"><span class="theme-last-updated">Last updated<!-- --> on <b><time datetime="2022-04-30T00:00:00.000Z">Apr 30, 2022</time></b></span></div></div></footer></article><nav class="pagination-nav docusaurus-mt-lg" aria-label="Docs pages"><a class="pagination-nav__link pagination-nav__link--prev" href="/ib002/graphs/iterative-and-iterators/"><div class="pagination-nav__sublabel">Previous</div><div class="pagination-nav__label">Iterative algorithms via iterators</div></a></nav></div></div><div class="col col--3"><div class="tableOfContents_bqdL thin-scrollbar theme-doc-toc-desktop"><ul class="table-of-contents table-of-contents__left-border"><li><a href="#introduction" class="table-of-contents__link toc-highlight">Introduction</a></li><li><a href="#lower-bound" class="table-of-contents__link toc-highlight">Lower bound</a></li><li><a href="#proof-by-contradiction" class="table-of-contents__link toc-highlight">Proof by contradiction</a></li></ul></div></div></div></div></main></div></div><footer class="footer footer--dark"><div class="container container-fluid"><div class="row footer__links"><div class="col footer__col"><div class="footer__title">Git</div><ul class="footer__items clean-list"><li class="footer__item"><a href="https://github.com/mfocko" target="_blank" rel="noopener noreferrer" class="footer__link-item">GitHub<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li><li class="footer__item"><a href="https://gitlab.com/mfocko" target="_blank" rel="noopener noreferrer" class="footer__link-item">GitLab<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li><li class="footer__item"><a href="https://git.mfocko.xyz/mfocko" target="_blank" rel="noopener noreferrer" class="footer__link-item">Gitea (self-hosted)<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li></ul></div><div class="col footer__col"><div class="footer__title">Social #1</div><ul class="footer__items clean-list"><li class="footer__item"><a href="https://www.linkedin.com/in/mfocko/" target="_blank" rel="noopener noreferrer" class="footer__link-item">LinkedIn<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li><li class="footer__item"><a href="https://fosstodon.org/@m4tt_314" target="_blank" rel="noopener noreferrer" class="footer__link-item">Fosstodon<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li><li class="footer__item"><a href="https://hachyderm.io/@m4tt_314" target="_blank" rel="noopener noreferrer" class="footer__link-item">Hachyderm.io<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li></ul></div><div class="col footer__col"><div class="footer__title">Social #2</div><ul class="footer__items clean-list"><li class="footer__item"><a href="https://twitter.com/m4tt_314" target="_blank" rel="noopener noreferrer" class="footer__link-item">Twitter<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li><li class="footer__item"><a href="https://twitch.tv/m4tt_314" target="_blank" rel="noopener noreferrer" class="footer__link-item">Twitch<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li><li class="footer__item"><a href="https://ko-fi.com/m4tt_314" target="_blank" rel="noopener noreferrer" class="footer__link-item">Ko-fi<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li></ul></div></div><div class="footer__bottom text--center"><div class="footer__copyright">Copyright © 2023 Matej Focko.</div></div></div></footer></div>
|
||
<script src="/assets/js/runtime~main.aac6ed28.js"></script>
|
||
<script src="/assets/js/main.a28961b3.js"></script>
|
||
</body>
|
||
</html> |