mirror of
https://github.com/mfocko/blog.git
synced 2024-11-13 01:30:29 +01:00
229 lines
6.1 KiB
C++
229 lines
6.1 KiB
C++
#include <algorithm>
|
||
#include <cassert>
|
||
#include <vector>
|
||
|
||
using matrix = std::vector<std::vector<int>>;
|
||
|
||
template <typename T>
|
||
class diagonal {
|
||
using matrix_t = std::vector<std::vector<T>>;
|
||
|
||
matrix_t& matrix;
|
||
std::size_t x;
|
||
std::size_t y;
|
||
|
||
class diagonal_iter {
|
||
// we need to keep reference to the matrix itself
|
||
std::reference_wrapper<matrix_t> m;
|
||
|
||
// we need to be able to tell our current position
|
||
std::size_t x;
|
||
std::size_t y;
|
||
|
||
public:
|
||
using difference_type = std::ptrdiff_t;
|
||
using value_type = T;
|
||
using pointer = T*;
|
||
using reference = T&;
|
||
using iterator_category = std::random_access_iterator_tag;
|
||
|
||
diagonal_iter(matrix_t& matrix,
|
||
std::size_t x,
|
||
std::size_t y)
|
||
: m(matrix)
|
||
, x(x)
|
||
, y(y)
|
||
{
|
||
}
|
||
|
||
bool operator==(const diagonal_iter& rhs) const
|
||
{
|
||
return x == rhs.x && y == rhs.y && m.get() == rhs.m.get();
|
||
}
|
||
|
||
diagonal_iter& operator++()
|
||
{
|
||
// we are moving along the diagonal, so we increment both ‹x› and ‹y›
|
||
// at the same time
|
||
x++;
|
||
y++;
|
||
return *this;
|
||
}
|
||
|
||
reference operator*() const { return m.get()[y][x]; }
|
||
|
||
// exactly opposite to the incrementation
|
||
diagonal_iter operator--()
|
||
{
|
||
x--;
|
||
y--;
|
||
return *this;
|
||
}
|
||
|
||
// moving ‹n› steps back is same as calling decrementation ‹n›-times, so
|
||
// we can just return a new iterator and subtract ‹n› from both
|
||
// coordinates in the matrix
|
||
diagonal_iter operator-(difference_type n) const
|
||
{
|
||
return diagonal_iter { m, x - n, y - n };
|
||
}
|
||
|
||
// here we assume that we are given two iterators on the same diagonal
|
||
difference_type operator-(const diagonal_iter& rhs) const
|
||
{
|
||
assert(m.get() == rhs.m.get());
|
||
return x - rhs.x;
|
||
}
|
||
|
||
// counterpart of moving ‹n› steps backwards
|
||
diagonal_iter operator+(difference_type n) const
|
||
{
|
||
return diagonal_iter { m, x + n, y + n };
|
||
}
|
||
|
||
// we compare the coordinates, and also assume that those 2 iterators are
|
||
// lying on the same diagonal
|
||
bool operator<(const diagonal_iter& rhs) const
|
||
{
|
||
assert(m.get() == rhs.m.get());
|
||
return x < rhs.x && y < rhs.y;
|
||
}
|
||
};
|
||
|
||
public:
|
||
diagonal(matrix_t& matrix, std::size_t x, std::size_t y)
|
||
: matrix(matrix)
|
||
, x(x)
|
||
, y(y)
|
||
{
|
||
}
|
||
|
||
diagonal_iter begin() const { return diagonal_iter { matrix, x, y }; }
|
||
|
||
diagonal_iter end() const
|
||
{
|
||
auto max_x = matrix[y].size();
|
||
auto max_y = matrix.size();
|
||
|
||
// we need to find the distance in which we get out of bounds (either in
|
||
// column or row)
|
||
auto steps = std::min(max_x - x, max_y - y);
|
||
|
||
return diagonal_iter { matrix, x + steps, y + steps };
|
||
}
|
||
};
|
||
|
||
template <typename T>
|
||
class diagonals {
|
||
using matrix_t = std::vector<std::vector<T>>;
|
||
|
||
class diagonals_iter {
|
||
matrix_t& m;
|
||
std::size_t x;
|
||
std::size_t y;
|
||
|
||
public:
|
||
diagonals_iter(matrix_t& matrix, std::size_t x, std::size_t y)
|
||
: m(matrix)
|
||
, x(x)
|
||
, y(y)
|
||
{
|
||
}
|
||
|
||
bool operator!=(const diagonals_iter& rhs) const
|
||
{
|
||
// iterators are not equal if they reference different matrices, or
|
||
// their positions differ
|
||
return x != rhs.x || y != rhs.y || m != rhs.m;
|
||
}
|
||
|
||
diagonals_iter& operator++()
|
||
{
|
||
if (y != 0) {
|
||
// iterating through diagonals down the first column
|
||
y++;
|
||
return *this;
|
||
}
|
||
|
||
// iterating the diagonals along the first row
|
||
x++;
|
||
if (x == m.front().size()) {
|
||
// switching to diagonals in the first column
|
||
x = 0;
|
||
y++;
|
||
}
|
||
|
||
return *this;
|
||
}
|
||
|
||
diagonal<T> operator*() const { return diagonal { m, x, y }; }
|
||
};
|
||
|
||
matrix_t& _matrix;
|
||
|
||
public:
|
||
diagonals(matrix_t& m)
|
||
: _matrix(m)
|
||
{
|
||
}
|
||
diagonals_iter begin() { return diagonals_iter { _matrix, 0, 0 }; }
|
||
diagonals_iter end() { return diagonals_iter { _matrix, 0, _matrix.size() }; }
|
||
};
|
||
|
||
class Solution {
|
||
public:
|
||
matrix diagonalSort(matrix mat)
|
||
{
|
||
// we iterate over the diagonals
|
||
for (auto d : diagonals(mat)) {
|
||
// and we sort each diagonal
|
||
std::sort(d.begin(), d.end());
|
||
}
|
||
|
||
// we take the matrix by copy, so we can sort in-situ and return the copy
|
||
// that we sorted
|
||
return mat;
|
||
}
|
||
};
|
||
|
||
static void test_case_1()
|
||
{
|
||
// Input: mat = [[3,3,1,1],[2,2,1,2],[1,1,1,2]]
|
||
// Output: [[1,1,1,1],[1,2,2,2],[1,2,3,3]]
|
||
|
||
Solution s;
|
||
assert((s.diagonalSort(std::vector { std::vector { 3, 3, 1, 1 },
|
||
std::vector { 2, 2, 1, 2 },
|
||
std::vector { 1, 1, 1, 2 } })
|
||
== std::vector { std::vector { 1, 1, 1, 1 },
|
||
std::vector { 1, 2, 2, 2 },
|
||
std::vector { 1, 2, 3, 3 } }));
|
||
}
|
||
|
||
static void test_case_2()
|
||
{
|
||
// Input: mat =
|
||
// [[11,25,66,1,69,7],[23,55,17,45,15,52],[75,31,36,44,58,8],[22,27,33,25,68,4],[84,28,14,11,5,50]]
|
||
// Output:
|
||
// [[5,17,4,1,52,7],[11,11,25,45,8,69],[14,23,25,44,58,15],[22,27,31,36,50,66],[84,28,75,33,55,68]]
|
||
|
||
Solution s;
|
||
assert((s.diagonalSort(std::vector { std::vector { 11, 25, 66, 1, 69, 7 },
|
||
std::vector { 23, 55, 17, 45, 15, 52 },
|
||
std::vector { 75, 31, 36, 44, 58, 8 },
|
||
std::vector { 22, 27, 33, 25, 68, 4 },
|
||
std::vector { 84, 28, 14, 11, 5, 50 } })
|
||
== std::vector { std::vector { 5, 17, 4, 1, 52, 7 },
|
||
std::vector { 11, 11, 25, 45, 8, 69 },
|
||
std::vector { 14, 23, 25, 44, 58, 15 },
|
||
std::vector { 22, 27, 31, 36, 50, 66 },
|
||
std::vector { 84, 28, 75, 33, 55, 68 } }));
|
||
}
|
||
|
||
int main()
|
||
{
|
||
test_case_1();
|
||
test_case_2();
|
||
|
||
return 0;
|
||
}
|