algorithms(bf-to-astar): add intro

Signed-off-by: Matej Focko <me@mfocko.xyz>
This commit is contained in:
Matej Focko 2024-01-01 18:13:30 +01:00
parent d99297a19c
commit d16eaafd97
Signed by: mfocko
GPG key ID: 7C47D46246790496
5 changed files with 295 additions and 0 deletions

View file

@ -0,0 +1,169 @@
---
id: index
slug: /paths/bf-to-astar
title: From BF to A*
description: |
Figuring out shortest-path problem from the BF to the A* algorithm.
tags:
- cpp
- brute force
- bellman ford
- dynamic programming
- dijkstra
- a star
last_update:
date: 2024-01-01
---
## Intro
We will delve into the details and ideas of the most common path-finding
algorithms. For the purpose of demonstrating some “features” of the improved
algorithms, we will use a 2D map with some rules that will allow us to show cons
and pros of the shown algorithms.
Let's have a look at the example map:
```
#############
#..#..*.*.**#
##***.....**#
#..########.#
#...###...#.#
#..#...##.#.#
#..#.*.#..#.#
#....#....#.#
########*.*.#
#...........#
#############
```
We can see three different kinds of cells:
1. `#` which represent walls, that cannot be entered at all
2. `*` which represent vortices that can be entered at the cost of 5 coins
3. `.` which represent normal cells that can be entered for 1 coin (which is the
base price of moving around the map)
Let's dissect a specific position on the map to get a better grasp of the rules:
```
.
#S*
.
```
We are standing in the cell marked with `S` and we have the following options
* move to the north (`.`) with the cost of 1 coin,
* move to the west (`#`) **is not** allowed because of the wall,
* move to the east (`*`) is allowed with the cost of 5 coins, and finally
* move to the south (`.`) with the cost of 1 coin.
:::info
Further on I will follow the same scheme for marking cells with an addition of
`D` to denote the _destination_ to which we will be finding the shortest path.
:::
## Boilerplate
For working with this map I have prepared a basic structure for the graph in C++
that will abstract some of the internal workings of our map, namely:
* remembers the costs of moving around
* provides a simple function that returns price for moving **directly** between
two positions on the map
* allows us to print the map out, just in case we'd need some adjustments to be
made
We can see the `graph` header here:
```cpp
#ifndef _GRAPH_HPP
#define _GRAPH_HPP
#include <cmath>
#include <limits>
#include <ostream>
#include <utility>
#include <vector>
using vertex_t = std::pair<int, int>;
struct graph {
graph(const std::vector<std::vector<char>>& map)
: map(map),
_height(static_cast<int>(map.size())),
_width(map.empty() ? 0 : static_cast<int>(map[0].size())) {}
static auto unreachable() -> int { return UNREACHABLE; }
static auto normal_cost() -> int { return NORMAL_COST; }
static auto vortex_cost() -> int { return VORTEX_COST; }
auto cost(const vertex_t& u, const vertex_t& v) const -> int {
auto [ux, uy] = u;
auto [vx, vy] = v;
auto hd = std::abs(ux - vx) + std::abs(uy - vy);
switch (hd) {
// u = v; staying on the same cell
case 0:
return 0;
// u and v are neighbours
case 1:
break;
// u and v are not neighbouring cells
default:
return UNREACHABLE;
}
// boundary check
if (vy < 0 || vy >= _height || vx < 0 || vx >= _width) {
return UNREACHABLE;
}
switch (map[vy][vx]) {
case '#':
return UNREACHABLE;
case '*':
return VORTEX_COST;
default:
return NORMAL_COST;
}
}
auto width() const -> int { return _width; }
auto height() const -> int { return _height; }
auto has(const vertex_t& v) const -> bool {
auto [x, y] = v;
return (0 <= y && y < _height) && (0 <= x && x < _width);
}
friend std::ostream& operator<<(std::ostream& os, const graph& g);
private:
std::vector<std::vector<char>> map;
int _height, _width;
const static int UNREACHABLE = std::numeric_limits<int>::max();
// XXX: modify here to change the price of entering the vortex
const static int VORTEX_COST = 5;
const static int NORMAL_COST = 1;
};
std::ostream& operator<<(std::ostream& os, const graph& g) {
for (const auto& row : g.map) {
for (const char cell : row) {
os << cell;
}
os << "\n";
}
return os;
}
#endif /* _GRAPH_HPP */
```
:::info Source code
**TODO** link the sources
:::
Let's finally start with some algorithms!

View file

@ -0,0 +1,84 @@
#ifndef _GRAPH_HPP
#define _GRAPH_HPP
#include <cmath>
#include <limits>
#include <ostream>
#include <utility>
#include <vector>
using vertex_t = std::pair<int, int>;
struct graph {
graph(const std::vector<std::vector<char>>& map)
: map(map),
_height(static_cast<int>(map.size())),
_width(map.empty() ? 0 : static_cast<int>(map[0].size())) {}
static auto unreachable() -> int { return UNREACHABLE; }
static auto normal_cost() -> int { return NORMAL_COST; }
static auto vortex_cost() -> int { return VORTEX_COST; }
auto cost(const vertex_t& u, const vertex_t& v) const -> int {
auto [ux, uy] = u;
auto [vx, vy] = v;
auto md = std::abs(ux - vx) + std::abs(uy - vy);
switch (md) {
// u = v; staying on the same cell
case 0:
return 0;
// u and v are neighbours
case 1:
break;
// u and v are not neighbouring cells
default:
return UNREACHABLE;
}
// boundary check
if (vy < 0 || vy >= _height || vx < 0 || vx >= _width) {
return UNREACHABLE;
}
switch (map[vy][vx]) {
case '#':
return UNREACHABLE;
case '*':
return VORTEX_COST;
default:
return NORMAL_COST;
}
}
auto width() const -> int { return _width; }
auto height() const -> int { return _height; }
auto has(const vertex_t& v) const -> bool {
auto [x, y] = v;
return (0 <= y && y < _height) && (0 <= x && x < _width);
}
friend std::ostream& operator<<(std::ostream& os, const graph& g);
private:
std::vector<std::vector<char>> map;
int _height, _width;
const static int UNREACHABLE = std::numeric_limits<int>::max();
// XXX: modify here to change the price of entering the vortex
const static int VORTEX_COST = 5;
const static int NORMAL_COST = 1;
};
std::ostream& operator<<(std::ostream& os, const graph& g) {
for (const auto& row : g.map) {
for (const char cell : row) {
os << cell;
}
os << "\n";
}
return os;
}
#endif /* _GRAPH_HPP */

View file

@ -0,0 +1,34 @@
#include <iostream>
#include <string>
#include <utility>
#include <vector>
#include "astar.hpp"
#include "bf.hpp"
#include "dijkstra.hpp"
#include "graph.hpp"
auto line_to_vector(const std::string& l) -> std::vector<char> {
return std::vector(l.begin(), l.end());
}
auto main() -> int {
graph g{std::vector{
line_to_vector(std::string("#############")),
line_to_vector(std::string("#..#..*.*.**#")),
line_to_vector(std::string("##***.....**#")),
line_to_vector(std::string("#..########.#")),
line_to_vector(std::string("#...###...#.#")),
line_to_vector(std::string("#..#...##.#.#")),
line_to_vector(std::string("#..#.*.#..#.#")),
line_to_vector(std::string("#....#....#.#")),
line_to_vector(std::string("########*.*.#")),
line_to_vector(std::string("#...........#")),
line_to_vector(std::string("#############")),
}};
std::cout << "Normal cost: " << g.normal_cost() << "\n";
std::cout << "Vortex cost: " << g.vortex_cost() << "\n";
std::cout << "Graph:\n" << g;
return 0;
}

View file

@ -0,0 +1,8 @@
CXX=c++
CXXFLAGS=-std=c++20 -Wall -Wextra -g
all: format
$(CXX) $(CXXFLAGS) main.cpp -o main
format:
clang-format -i -style=google *.hpp *.cpp