mirror of
https://github.com/mfocko/blog.git
synced 2024-12-24 13:21:30 +01:00
137 lines
84 KiB
HTML
137 lines
84 KiB
HTML
|
<!doctype html>
|
|||
|
<html lang="en" dir="ltr" class="docs-wrapper plugin-docs plugin-id-algorithms docs-version-current docs-doc-page docs-doc-id-recursion/2023-08-17-pyramid-slide-down/top-down-dp" data-has-hydrated="false">
|
|||
|
<head>
|
|||
|
<meta charset="UTF-8">
|
|||
|
<meta name="generator" content="Docusaurus v3.0.1">
|
|||
|
<title data-rh="true">Top-down DP solution | mf</title><meta data-rh="true" name="viewport" content="width=device-width,initial-scale=1"><meta data-rh="true" name="twitter:card" content="summary_large_image"><meta data-rh="true" property="og:url" content="https://blog.mfocko.xyz/algorithms/recursion/pyramid-slide-down/top-down-dp/"><meta data-rh="true" property="og:locale" content="en"><meta data-rh="true" name="docusaurus_locale" content="en"><meta data-rh="true" name="docsearch:language" content="en"><meta data-rh="true" name="docusaurus_version" content="current"><meta data-rh="true" name="docusaurus_tag" content="docs-algorithms-current"><meta data-rh="true" name="docsearch:version" content="current"><meta data-rh="true" name="docsearch:docusaurus_tag" content="docs-algorithms-current"><meta data-rh="true" property="og:title" content="Top-down DP solution | mf"><meta data-rh="true" name="description" content="Top-down DP solution of the Pyramid Slide Down.
|
|||
|
"><meta data-rh="true" property="og:description" content="Top-down DP solution of the Pyramid Slide Down.
|
|||
|
"><link data-rh="true" rel="icon" href="/img/favicon.ico"><link data-rh="true" rel="canonical" href="https://blog.mfocko.xyz/algorithms/recursion/pyramid-slide-down/top-down-dp/"><link data-rh="true" rel="alternate" href="https://blog.mfocko.xyz/algorithms/recursion/pyramid-slide-down/top-down-dp/" hreflang="en"><link data-rh="true" rel="alternate" href="https://blog.mfocko.xyz/algorithms/recursion/pyramid-slide-down/top-down-dp/" hreflang="x-default"><link data-rh="true" rel="preconnect" href="https://0VXRFPR4QF-dsn.algolia.net" crossorigin="anonymous"><link rel="search" type="application/opensearchdescription+xml" title="mf" href="/opensearch.xml">
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<link rel="alternate" type="application/rss+xml" href="/blog/rss.xml" title="mf RSS Feed">
|
|||
|
<link rel="alternate" type="application/atom+xml" href="/blog/atom.xml" title="mf Atom Feed">
|
|||
|
<link rel="alternate" type="application/json" href="/blog/feed.json" title="mf JSON Feed">
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.24/dist/katex.min.css" integrity="sha384-odtC+0UGzzFL/6PNoE8rX/SPcQDXBJ+uRepguP4QkPCm2LBxH3FA3y+fKSiJ+AmM" crossorigin="anonymous"><link rel="stylesheet" href="/assets/css/styles.e1ac7597.css">
|
|||
|
<script src="/assets/js/runtime~main.8dd9984c.js" defer="defer"></script>
|
|||
|
<script src="/assets/js/main.c998cb37.js" defer="defer"></script>
|
|||
|
</head>
|
|||
|
<body class="navigation-with-keyboard">
|
|||
|
<script>!function(){function t(t){document.documentElement.setAttribute("data-theme",t)}var e=function(){try{return new URLSearchParams(window.location.search).get("docusaurus-theme")}catch(t){}}()||function(){try{return localStorage.getItem("theme")}catch(t){}}();t(null!==e?e:"light")}(),function(){try{const c=new URLSearchParams(window.location.search).entries();for(var[t,e]of c)if(t.startsWith("docusaurus-data-")){var a=t.replace("docusaurus-data-","data-");document.documentElement.setAttribute(a,e)}}catch(t){}}()</script><div id="__docusaurus"><div role="region" aria-label="Skip to main content"><a class="skipToContent_fXgn" href="#__docusaurus_skipToContent_fallback">Skip to main content</a></div><nav aria-label="Main" class="navbar navbar--fixed-top"><div class="navbar__inner"><div class="navbar__items"><button aria-label="Toggle navigation bar" aria-expanded="false" class="navbar__toggle clean-btn" type="button"><svg width="30" height="30" viewBox="0 0 30 30" aria-hidden="true"><path stroke="currentColor" stroke-linecap="round" stroke-miterlimit="10" stroke-width="2" d="M4 7h22M4 15h22M4 23h22"></path></svg></button><a class="navbar__brand" href="/"><b class="navbar__title text--truncate">mf</b></a><div class="navbar__item dropdown dropdown--hoverable"><a href="#" aria-haspopup="true" aria-expanded="false" role="button" class="navbar__link">Additional FI MU materials</a><ul class="dropdown__menu"><li><a aria-current="page" class="dropdown__link dropdown__link--active" href="/algorithms/">Algorithms</a></li><li><a class="dropdown__link" href="/c/">C</a></li><li><a class="dropdown__link" href="/cpp/">C++</a></li></ul></div><a class="navbar__item navbar__link" href="/contributions/">Contributions</a><a class="navbar__item navbar__link" href="/talks/">Talks</a></div><div class="navbar__items navbar__items--right"><a class="navbar__item navbar__link" href="/blog/">Blog</a><div class="toggle_vylO colorModeToggle_DEke"><button class="clean-btn toggleButton_gllP toggleButtonDisabled_aARS" type="button" disabled="" title="Switch between dark and light mode (currently light mode)" aria-label="Switch between dark and light mode (currently light mode)" aria-live="polite"><svg viewBox="0 0 24 24" width="24" height="24" class="lightToggleIcon_pyhR"><path fill="currentColor" d="M12,9c1.65,0,3,1.35,3,3s-1.35,3-3,3s-3-1.35-3-3S10.35,9,12,9 M12,7c-2.76,0-5,2.24-5,5s2.24,5,5,5s5-2.24,5-5 S14.76,7,12,7L12,7z M2,13l2,0c0.55,0,1-0.45,1-1s-0.45-1-1-1l-2,0c-0.55,0-1,0.45-1,1S1.45,13,2,13z M20,13l2,0c0.55,0,1-0.45,1-1 s-0.45-1-1-1l-2,0c-0.55,0-1,0.45-1,1S19.45,13,20,13z M11,2v2c0,0.55,0.45,1,1,1s1-0.45,1-1V2c0-0.55-0.45-1-1-1S11,1.45,11,2z M11,20v2c0,0.55,0.45,1,1,1s1-0.45,1-1v-2c0-0.55-0.45-1-1-1C11.45,19,11,19.45,11,20z M5.99,4.58c-0.39-0.39-1.03-0.39-1.41,0 c-0.39,0.39-0.39,1.03,0,1.41l1.06,1.06c0.39,0.39,1.03,0.39,1.41,0s0.39-1.03,0-1.41L5.99,4.58z M18.36,16.95 c-0.39-0.39-1.03-0.39-1.41,0c-0.39,0.39-0.39,1.03,0,1.41l1.06,1.06c0.39,0.39,1.03,0.39,1.41,0c0.39-0.39,0.39-1.03,0-1.41 L18.36,16.95z M19.42,5.99c0.39-0.39,0.39-1.03,0-1.41c-0.39-0.39-1.03-0.39-1.41,0l-1.06,1.06c-0.39,0.39-0.39,1.03,0,1.41 s1.03,0.39,1.41,0L19.42,5.99z M7.05,18.36c0.39-0.39,0.39-1.03,0-1.41c-0.39-0.39-1.03-0.39-1.41,0l-1.06,1.06 c-0.39,0.39-0.39,1.03,0,1.41s1.03,0.39,1.41,0L7.05,18.36z"></path></svg><svg viewBox="0 0 24 24" width="24" height="24" class="darkToggleIcon_wfgR"><path fill="currentColor" d="M9.37,5.51C9.19,6.15,9.1,6.82,9.1,7.5c0,4.08,3.32,7.4,7.4,7.4c0.68,0,1.35-0.09,1.99-0.27C17.45,17.19,14.93,19,12,19 c-3.86,0-7-3.14-7-7C5,9.07,6.81,6.55,9.37,5.51z M12,3c-4.97,0-9,4.03-9,9s4.03,9,9,9s9-4.03,9-9c0-0.46-0.04-0.92-0.1-1.36 c-0.98,1.37-2.58,2.26-4.4,2.26c-2.98,0-5.4-2.42-5.4-5.4c0-1.81,0.89-3.42,2.26-4.4C12.92,3.04,12.46,3,12,3L12,3z"></path></svg></button></div><div class="navbarSearchContainer_Bca1"><button type="button" class="DocSearch DocSearch-Button" aria-label="Search"><span class="DocSearch-Button-Container"><svg width="20" height="20" class="DocSearch-Search-Icon" viewBox="0 0 20 20"><path d="M14.386 14.386l4.0877 4.0877-4.0877-4.0877c-2.
|
|||
|
<p><em>Top-down dynamic programming</em> is probably the most common approach, since (at
|
|||
|
least looks like) is the easiest to implement. The whole point is avoiding the
|
|||
|
unnecessary computations that we have already done.</p>
|
|||
|
<p>In our case, we can use our naïve solution and put a <em>cache</em> on top of it that
|
|||
|
will make sure, we don't do unnecessary calculations.</p>
|
|||
|
<div class="language-java codeBlockContainer_Ckt0 theme-code-block" style="--prism-color:#393A34;--prism-background-color:#f6f8fa"><div class="codeBlockContent_biex"><pre tabindex="0" class="prism-code language-java codeBlock_bY9V thin-scrollbar" style="color:#393A34;background-color:#f6f8fa"><code class="codeBlockLines_e6Vv"><span class="token-line" style="color:#393A34"><span class="token comment" style="color:#999988;font-style:italic">// This “structure” is required, since I have decided to use ‹TreeMap› which</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"></span><span class="token comment" style="color:#999988;font-style:italic">// requires the ordering on the keys. It represents one position in the pyramid.</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"></span><span class="token keyword" style="color:#00009f">record</span><span class="token plain"> </span><span class="token class-name">Position</span><span class="token punctuation" style="color:#393A34">(</span><span class="token keyword" style="color:#00009f">int</span><span class="token plain"> row</span><span class="token punctuation" style="color:#393A34">,</span><span class="token plain"> </span><span class="token keyword" style="color:#00009f">int</span><span class="token plain"> col</span><span class="token punctuation" style="color:#393A34">)</span><span class="token plain"> </span><span class="token keyword" style="color:#00009f">implements</span><span class="token plain"> </span><span class="token class-name">Comparable</span><span class="token generics punctuation" style="color:#393A34"><</span><span class="token generics class-name">Position</span><span class="token generics punctuation" style="color:#393A34">></span><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">{</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token keyword" style="color:#00009f">public</span><span class="token plain"> </span><span class="token keyword" style="color:#00009f">int</span><span class="token plain"> </span><span class="token function" style="color:#d73a49">compareTo</span><span class="token punctuation" style="color:#393A34">(</span><span class="token class-name">Position</span><span class="token plain"> r</span><span class="token punctuation" style="color:#393A34">)</span><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">{</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token keyword" style="color:#00009f">if</span><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">(</span><span class="token plain">row </span><span class="token operator" style="color:#393A34">!=</span><span class="token plain"> r</span><span class="token punctuation" style="color:#393A34">.</span><span class="token plain">row</span><span class="token punctuation" style="color:#393A34">)</span><span class="token plain"> </span><span class="token punctuation" style="color:#393A34">{</span><span class="token plain"></span><br></span><span class="token-line" style="color:#393A34"><span class="token plain"> </span><span class="token keyword" style="color:#00009f">return</span><span class="token plain"> </span><span class="token class-name">Integer</span><span class="token punctuation" style="color:#393A34">.</span><span class="token function" style="color:#d73a49">valueOf</span><span class="token punctuation" style="color:#393A34">(</span><span class="token plain">row</span><span class="token punctuation" style="color:#393A34">)</span><span class="token punctuation" style="color:#393A34">.</span><span class="token function" style="color:#d73a49">compareTo</span><span class="token punctuation" style="color:#393A34">(</span><
|
|||
|
<p>You have probably noticed that <code>record Position</code> have appeared. Since we are
|
|||
|
caching the already computed values, we need a “reasonable” key. In this case we
|
|||
|
share the cache only for one <em>run</em> (i.e. pyramid) of the <code>longestSlideDown</code>, so
|
|||
|
we can cache just with the indices within the pyramid, i.e. the <code>Position</code>.</p>
|
|||
|
<div class="theme-admonition theme-admonition-tip admonition_xJq3 alert alert--success"><div class="admonitionHeading_Gvgb"><span class="admonitionIcon_Rf37"><svg viewBox="0 0 12 16"><path fill-rule="evenodd" d="M6.5 0C3.48 0 1 2.19 1 5c0 .92.55 2.25 1 3 1.34 2.25 1.78 2.78 2 4v1h5v-1c.22-1.22.66-1.75 2-4 .45-.75 1-2.08 1-3 0-2.81-2.48-5-5.5-5zm3.64 7.48c-.25.44-.47.8-.67 1.11-.86 1.41-1.25 2.06-1.45 3.23-.02.05-.02.11-.02.17H5c0-.06 0-.13-.02-.17-.2-1.17-.59-1.83-1.45-3.23-.2-.31-.42-.67-.67-1.11C2.44 6.78 2 5.65 2 5c0-2.2 2.02-4 4.5-4 1.22 0 2.36.42 3.22 1.19C10.55 2.94 11 3.94 11 5c0 .66-.44 1.78-.86 2.48zM4 14h5c-.23 1.14-1.3 2-2.5 2s-2.27-.86-2.5-2z"></path></svg></span>Record</div><div class="admonitionContent_BuS1"><p><em>Record</em> is relatively new addition to the Java language. It is basically an
|
|||
|
immutable structure with implicitly defined <code>.equals()</code>, <code>.hashCode()</code>,
|
|||
|
<code>.toString()</code> and getters for the attributes.</p></div></div>
|
|||
|
<p>Because of the choice of <code>TreeMap</code>, we had to additionally define the ordering
|
|||
|
on it.</p>
|
|||
|
<p>In the <code>longestSlideDown</code> you can notice that the computation which used to be
|
|||
|
at the end of the naïve version above, is now wrapped in an <code>if</code> statement that
|
|||
|
checks for the presence of the position in the cache and computes the slide down
|
|||
|
just when it's needed.</p>
|
|||
|
<h2 class="anchor anchorWithStickyNavbar_LWe7" id="time-complexity">Time complexity<a href="#time-complexity" class="hash-link" aria-label="Direct link to Time complexity" title="Direct link to Time complexity"></a></h2>
|
|||
|
<p>If you think that evaluating time complexity for this approach is a bit more
|
|||
|
tricky, you are right. Keeping the cache in mind, it is not the easiest thing
|
|||
|
to do. However there are some observations that might help us figure this out:</p>
|
|||
|
<ol>
|
|||
|
<li>Slide down from each position is calculated only once.</li>
|
|||
|
<li>Once calculated, we use the result from the cache.</li>
|
|||
|
</ol>
|
|||
|
<p>Knowing this, we still cannot, at least easily, describe the time complexity of
|
|||
|
finding the best slide down from a specific position, <strong>but</strong> we can bound it
|
|||
|
from above for the <strong>whole</strong> run from the top. Now the question is how we can do
|
|||
|
that!</p>
|
|||
|
<p>Overall we are doing the same things for almost<sup><a href="#user-content-fn-1" id="user-content-fnref-1" data-footnote-ref="true" aria-describedby="footnote-label">1</a></sup> all of the positions within
|
|||
|
the pyramid:</p>
|
|||
|
<ol>
|
|||
|
<li>
|
|||
|
<p>We calculate and store it (using the partial results stored in cache). This
|
|||
|
is done only once.</p>
|
|||
|
<p>For each calculation we take 2 values from the cache and insert one value.
|
|||
|
Because we have chosen <code>TreeMap</code>, these 3 operations have logarithmic time
|
|||
|
complexity and therefore this step is equivalent to <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mo>⋅</mo><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>n</mi></mrow><annotation encoding="application/x-tex">3 \cdot \log_2{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span></span><span class="base"><span class="strut" style="height:0.9386em;vertical-align:-0.2441em"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em"><span style="top:-2.4559em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span></span></span></span>.</p>
|
|||
|
<p>However for the sake of simplicity, we are going to account only for the
|
|||
|
insertion, the reason is rather simple, if we include the 2 retrievals here,
|
|||
|
it will be interleaved with the next step, therefore it is easier to keep the
|
|||
|
retrievals in the following point.</p>
|
|||
|
<div class="theme-admonition theme-admonition-caution admonition_xJq3 alert alert--warning"><div class="admonitionHeading_Gvgb"><span class="admonitionIcon_Rf37"><svg viewBox="0 0 16 16"><path fill-rule="evenodd" d="M8.893 1.5c-.183-.31-.52-.5-.887-.5s-.703.19-.886.5L.138 13.499a.98.98 0 0 0 0 1.001c.193.31.53.501.886.501h13.964c.367 0 .704-.19.877-.5a1.03 1.03 0 0 0 .01-1.002L8.893 1.5zm.133 11.497H6.987v-2.003h2.039v2.003zm0-3.004H6.987V5.987h2.039v4.006z"></path></svg></span>caution</div><div class="admonitionContent_BuS1"><p>You might have noticed it's still not that easy, cause we're not having full
|
|||
|
cache right from the beginning, but the sum of those logarithms cannot be
|
|||
|
expressed in a nice way, so taking the upper bound, i.e. expecting the cache
|
|||
|
to be full at all times, is the best option for nice and readable complexity
|
|||
|
of the whole approach.</p></div></div>
|
|||
|
<p>Our final upper bound of this work is therefore <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>n</mi></mrow><annotation encoding="application/x-tex">\log_2{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9386em;vertical-align:-0.2441em"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em"><span style="top:-2.4559em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span></span></span></span>.</p>
|
|||
|
</li>
|
|||
|
<li>
|
|||
|
<p>We retrieve it from the cache. Same as in first point, but only twice, so we
|
|||
|
get <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mo>⋅</mo><msub><mrow><mi>log</mi><mo></mo></mrow><mn>2</mn></msub><mi>n</mi></mrow><annotation encoding="application/x-tex">2 \cdot \log_2{n}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span></span><span class="base"><span class="strut" style="height:0.9386em;vertical-align:-0.2441em"></span><span class="mop"><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.207em"><span style="top:-2.4559em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2441em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span></span></span></span>.</p>
|
|||
|
<div class="theme-admonition theme-admonition-caution admonition_xJq3 alert alert--warning"><div class="admonitionHeading_Gvgb"><span class="admonitionIcon_Rf37"><svg viewBox="0 0 16 16"><path fill-rule="evenodd" d="M8.893 1.5c-.183-.31-.52-.5-.887-.5s-.703.19-.886.5L.138 13.499a.98.98 0 0 0 0 1.001c.193.31.53.501.886.501h13.964c.367 0 .704-.19.877-.5a1.03 1.03 0 0 0 .01-1.002L8.893 1.5zm.133 11.497H6.987v-2.003h2.039v2.003zm0-3.004H6.987V5.987h2.039v4.006z"></path></svg></span>caution</div><div class="admonitionContent_BuS1"><p>It's done twice because of the <code>.containsKey()</code> in the <code>if</code> condition.</p></div></div>
|
|||
|
</li>
|
|||
|
</ol>
|
|||
|
<p>Okay, we have evaluated work done for each of the cells in the pyramid and now
|
|||
|
we need to put it together.</p>
|
|||
|
<p>Let's split the time complexity of our solution into two operands:</p>
|
|||
|
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><mi>r</mi><mo>+</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{O}(r + s)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mord mathcal" style="margin-right:0.02778em">O</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.02778em">r</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mord mathnormal">s</span><span class="mclose">)</span></span></span></span></span>
|
|||
|
<p><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi></mrow><annotation encoding="application/x-tex">r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em"></span><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span></span></span> will represent the <em>actual</em> calculation of the cells and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>s</mi></mrow><annotation encoding="application/x-tex">s</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em"></span><span class="mord mathnormal">s</span></span></span></span> will represent
|
|||
|
the additional retrievals on top of the calculation.</p>
|
|||
|
<p>We calculate the values only <strong>once</strong>, therefore we can safely agree on:</p>
|
|||
|
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>r</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>n</mi><mo>⋅</mo><mi>log</mi><mo></mo><mi>n</mi></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
|||
|
r &= n \cdot \log{n} \\
|
|||
|
\end{align*}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.5em;vertical-align:-0.5em"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1em"><span style="top:-3.16em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5em"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1em"><span style="top:-3.16em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5em"><span></span></span></span></span></span></span></span></span></span></span></span>
|
|||
|
<p>What about the <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>s</mi></mrow><annotation encoding="application/x-tex">s</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em"></span><span class="mord mathnormal">s</span></span></span></span> though? Key observation here is the fact that we have 2
|
|||
|
lookups on the tree in each of them <strong>and</strong> we do it twice, cause each cell has
|
|||
|
at most 2 parents:</p>
|
|||
|
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>s</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>n</mi><mo>⋅</mo><mn>2</mn><mo>⋅</mo><mrow><mo fence="true">(</mo><mn>2</mn><mo>⋅</mo><mi>log</mi><mo></mo><mi>n</mi><mo fence="true">)</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>s</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>4</mn><mo>⋅</mo><mi>n</mi><mo>⋅</mo><mi>log</mi><mo></mo><mi>n</mi></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
|||
|
s &= n \cdot 2 \cdot \left( 2 \cdot \log{n} \right) \\
|
|||
|
s &= 4 \cdot n \cdot \log{n}
|
|||
|
\end{align*}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3em;vertical-align:-1.25em"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.75em"><span style="top:-3.91em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathnormal">s</span></span></span><span style="top:-2.41em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathnormal">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.25em"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.75em"><span style="top:-3.91em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span><span class="minner"><span class="mopen delimcenter" style="top:0em">(</span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span><span class="mclose delimcenter" style="top:0em">)</span></span></span></span><span style="top:-2.41em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em"></span><span class="mord">4</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.25em"><span></span></span></span></span></span></span></span></span></span></span></span>
|
|||
|
<div class="theme-admonition theme-admonition-tip admonition_xJq3 alert alert--success"><div class="admonitionHeading_Gvgb"><span class="admonitionIcon_Rf37"><svg viewBox="0 0 12 16"><path fill-rule="evenodd" d="M6.5 0C3.48 0 1 2.19 1 5c0 .92.55 2.25 1 3 1.34 2.25 1.78 2.78 2 4v1h5v-1c.22-1.22.66-1.75 2-4 .45-.75 1-2.08 1-3 0-2.81-2.48-5-5.5-5zm3.64 7.48c-.25.44-.47.8-.67 1.11-.86 1.41-1.25 2.06-1.45 3.23-.02.05-.02.11-.02.17H5c0-.06 0-.13-.02-.17-.2-1.17-.59-1.83-1.45-3.23-.2-.31-.42-.67-.67-1.11C2.44 6.78 2 5.65 2 5c0-2.2 2.02-4 4.5-4 1.22 0 2.36.42 3.22 1.19C10.55 2.94 11 3.94 11 5c0 .66-.44 1.78-.86 2.48zM4 14h5c-.23 1.14-1.3 2-2.5 2s-2.27-.86-2.5-2z"></path></svg></span>tip</div><div class="admonitionContent_BuS1"><p>You might've noticed that lookups actually take more time than the construction
|
|||
|
of the results. This is not entirely true, since we have included the
|
|||
|
<code>.containsKey()</code> and <code>.get()</code> from the <code>return</code> statement in the second part.</p><p>If we were to represent this more precisely, we could've gone with:</p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable rowspacing="0.25em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>r</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>3</mn><mo>⋅</mo><mi>n</mi><mo>⋅</mo><mi>log</mi><mo></mo><mi>n</mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>s</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><mo>⋅</mo><mi>n</mi><mo>⋅</mo><mi>log</mi><mo></mo><mi>n</mi></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
|||
|
r &= 3 \cdot n \cdot \log{n} \\
|
|||
|
s &= 2 \cdot n \cdot \log{n}
|
|||
|
\end{align*}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3em;vertical-align:-1.25em"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.75em"><span style="top:-3.91em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em">r</span></span></span><span style="top:-2.41em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathnormal">s</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.25em"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.75em"><span style="top:-3.91em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span></span></span><span style="top:-2.41em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.25em"><span></span></span></span></span></span></span></span></span></span></span></span><p>On the other hand we are summing both numbers together, therefore in the end it
|
|||
|
doesn't really matter.</p><p>(<em>Feel free to compare the sums of both “splits”.</em>)</p></div></div>
|
|||
|
<p>And so our final time complexity for the whole <em>top-down dynamic programming</em>
|
|||
|
approach is:</p>
|
|||
|
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><mi>r</mi><mo>+</mo><mi>s</mi><mo stretchy="false">)</mo><mspace linebreak="newline"></mspace><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><mi>n</mi><mo>⋅</mo><mi>log</mi><mo></mo><mi>n</mi><mo>+</mo><mn>4</mn><mo>⋅</mo><mi>n</mi><mo>⋅</mo><mi>log</mi><mo></mo><mi>n</mi><mo stretchy="false">)</mo><mspace linebreak="newline"></mspace><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><mn>5</mn><mo>⋅</mo><mi>n</mi><mo>⋅</mo><mi>log</mi><mo></mo><mi>n</mi><mo stretchy="false">)</mo><mspace linebreak="newline"></mspace><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><mi>n</mi><mo>⋅</mo><mi>log</mi><mo></mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{O}(r + s) \\
|
|||
|
\mathcal{O}(n \cdot \log{n} + 4 \cdot n \cdot \log{n}) \\
|
|||
|
\mathcal{O}(5 \cdot n \cdot \log{n}) \\
|
|||
|
\mathcal{O}(n \cdot \log{n})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mord mathcal" style="margin-right:0.02778em">O</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.02778em">r</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mord mathnormal">s</span><span class="mclose">)</span></span><span class="mspace newline"></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mord mathcal" style="margin-right:0.02778em">O</span><span class="mopen">(</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span></span><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em"></span><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em"></span></span><span class="base"><span class="strut" style="height:0.6444em"></span><span class="mord">4</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span></span><span class="base"><span class="strut" style="height:0.4445em"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span><span class="mclose">)</span></span><span class="mspace newline"></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mord mathcal" style="margin-right:0.02778em">O</span><span class="mopen">(</span><span class="mord">5</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span></span><span class="base"><span class="strut" style="height:0.4445em"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span><span class="mclose">)</span></span><span class="mspace newline"></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mord mathcal" style="margin-right:0.02778em">O</span><span class="mopen">(</span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mop">lo<span style="margin-right:0.01389em">g</span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathnormal">n</span></span><span class="mclose">)</span></span></span></span></span>
|
|||
|
<p>As you can see, this is worse than our <em>greedy</em> solution that was incorrect, but
|
|||
|
it's better than the <em>naïve</em> one.</p>
|
|||
|
<h2 class="anchor anchorWithStickyNavbar_LWe7" id="memory-complexity">Memory complexity<a href="#memory-complexity" class="hash-link" aria-label="Direct link to Memory complexity" title="Direct link to Memory complexity"></a></h2>
|
|||
|
<p>With this approach we need to talk about the memory complexity too, because we
|
|||
|
have introduced cache. If you think that the memory complexity is linear to the
|
|||
|
input, you are right. We start at the top and try to find each and every slide
|
|||
|
down. At the end we get the final result for <code>new Position(0, 0)</code>, so we need to
|
|||
|
compute everything below.</p>
|
|||
|
<p>That's how we obtain:</p>
|
|||
|
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{O}(n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mord mathcal" style="margin-right:0.02778em">O</span><span class="mopen">(</span><span class="mord mathnormal">n</span><span class="mclose">)</span></span></span></span></span>
|
|||
|
<p><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em"></span><span class="mord mathnormal">n</span></span></span></span> represents the total amount of cells in the pyramid, i.e.</p>
|
|||
|
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><munderover><mo>∑</mo><mrow><mi>y</mi><mo>=</mo><mn>0</mn></mrow><mrow><mrow><mi mathvariant="monospace">p</mi><mi mathvariant="monospace">y</mi><mi mathvariant="monospace">r</mi><mi mathvariant="monospace">a</mi><mi mathvariant="monospace">m</mi><mi mathvariant="monospace">i</mi><mi mathvariant="monospace">d</mi><mi mathvariant="monospace">.</mi><mi mathvariant="monospace">l</mi><mi mathvariant="monospace">e</mi><mi mathvariant="monospace">n</mi><mi mathvariant="monospace">g</mi><mi mathvariant="monospace">t</mi><mi mathvariant="monospace">h</mi></mrow><mo>−</mo><mn>1</mn></mrow></munderover><mrow><mi mathvariant="monospace">p</mi><mi mathvariant="monospace">y</mi><mi mathvariant="monospace">r</mi><mi mathvariant="monospace">a</mi><mi mathvariant="monospace">m</mi><mi mathvariant="monospace">i</mi><mi mathvariant="monospace">d</mi></mrow><mrow><mo fence="true">[</mo><mi>y</mi><mo fence="true">]</mo></mrow><mrow><mi mathvariant="monospace">.</mi><mi mathvariant="monospace">l</mi><mi mathvariant="monospace">e</mi><mi mathvariant="monospace">n</mi><mi mathvariant="monospace">g</mi><mi mathvariant="monospace">t</mi><mi mathvariant="monospace">h</mi></mrow></mrow><annotation encoding="application/x-tex">\sum_{y=0}^{\mathtt{pyramid.length} - 1} \mathtt{pyramid}\left[y\right]\mathtt{.length}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.2709em;vertical-align:-1.4032em"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8677em"><span style="top:-1.8829em;margin-left:0em"><span class="pstrut" style="height:3.05em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em">y</span><span class="mrel mtight">=</span><span class="mord mtight">0</span></span></span></span><span style="top:-3.05em"><span class="pstrut" style="height:3.05em"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3666em;margin-left:0em"><span class="pstrut" style="height:3.05em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathtt mtight">pyramid.length</span></span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.4032em"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathtt">pyramid</span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="minner"><span class="mopen delimcenter" style="top:0em">[</span><span class="mord mathnormal" style="margin-right:0.03588em">y</span><span class="mclose delimcenter" style="top:0em">]</span></span><span class="mspace" style="margin-right:0.1667em"></span><span class="mord"><span class="mord mathtt">.length</span></span></span></span></span></span>
|
|||
|
<div class="theme-admonition theme-admonition-caution admonition_xJq3 alert alert--warning"><div class="admonitionHeading_Gvgb"><span class="admonitionIcon_Rf37"><svg viewBox="0 0 16 16"><path fill-rule="evenodd" d="M8.893 1.5c-.183-.31-.52-.5-.887-.5s-.703.19-.886.5L.138 13.499a.98.98 0 0 0 0 1.001c.193.31.53.501.886.501h13.964c.367 0 .704-.19.877-.5a1.03 1.03 0 0 0 .01-1.002L8.893 1.5zm.133 11.497H6.987v-2.003h2.039v2.003zm0-3.004H6.987V5.987h2.039v4.006z"></path></svg></span>caution</div><div class="admonitionContent_BuS1"><p>If you're wondering whether it's correct because of the second <code>if</code> in our
|
|||
|
function, your guess is right. However we are expressing the complexity in the
|
|||
|
Bachmann-Landau notation, so we care about the <strong>upper bound</strong>, not the exact
|
|||
|
number.</p></div></div>
|
|||
|
<div class="theme-admonition theme-admonition-tip admonition_xJq3 alert alert--success"><div class="admonitionHeading_Gvgb"><span class="admonitionIcon_Rf37"><svg viewBox="0 0 12 16"><path fill-rule="evenodd" d="M6.5 0C3.48 0 1 2.19 1 5c0 .92.55 2.25 1 3 1.34 2.25 1.78 2.78 2 4v1h5v-1c.22-1.22.66-1.75 2-4 .45-.75 1-2.08 1-3 0-2.81-2.48-5-5.5-5zm3.64 7.48c-.25.44-.47.8-.67 1.11-.86 1.41-1.25 2.06-1.45 3.23-.02.05-.02.11-.02.17H5c0-.06 0-.13-.02-.17-.2-1.17-.59-1.83-1.45-3.23-.2-.31-.42-.67-.67-1.11C2.44 6.78 2 5.65 2 5c0-2.2 2.02-4 4.5-4 1.22 0 2.36.42 3.22 1.19C10.55 2.94 11 3.94 11 5c0 .66-.44 1.78-.86 2.48zM4 14h5c-.23 1.14-1.3 2-2.5 2s-2.27-.86-2.5-2z"></path></svg></span>Can this be optimized?</div><div class="admonitionContent_BuS1"><p>Yes, it can! Try to think about a way, how can you minimize the memory
|
|||
|
complexity of this approach. I'll give you a hint:</p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><mi>r</mi><mi>o</mi><mi>w</mi><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{O}(rows)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mord mathcal" style="margin-right:0.02778em">O</span><span class="mopen">(</span><span class="mord mathnormal">ro</span><span class="mord mathnormal" style="margin-right:0.02691em">w</span><span class="mord mathnormal">s</span><span class="mclose">)</span></span></span></span></span></div></div>
|
|||
|
<section data-footnotes="true" class="footnotes"><h2 class="anchor anchorWithStickyNavbar_LWe7 sr-only" id="footnote-label">Footnotes<a href="#footnote-label" class="hash-link" aria-label="Direct link to Footnotes" title="Direct link to Footnotes"></a></h2>
|
|||
|
<ol>
|
|||
|
<li id="user-content-fn-1">
|
|||
|
<p>except the bottom row <a href="#user-content-fnref-1" data-footnote-backref="" aria-label="Back to reference 1" class="data-footnote-backref">↩</a></p>
|
|||
|
</li>
|
|||
|
</ol>
|
|||
|
</section></div><footer class="theme-doc-footer docusaurus-mt-lg"><div class="theme-doc-footer-tags-row row margin-bottom--sm"><div class="col"><b>Tags:</b><ul class="tags_jXut padding--none margin-left--sm"><li class="tag_QGVx"><a class="tag_zVej tagRegular_sFm0" href="/algorithms/tags/java/">java</a></li><li class="tag_QGVx"><a class="tag_zVej tagRegular_sFm0" href="/algorithms/tags/dynamic-programming/">dynamic-programming</a></li><li class="tag_QGVx"><a class="tag_zVej tagRegular_sFm0" href="/algorithms/tags/top-down-dp/">top-down-dp</a></li></ul></div></div><div class="theme-doc-footer-edit-meta-row row"><div class="col"><a href="https://github.com/mfocko/blog/tree/main/algorithms/04-recursion/2023-08-17-pyramid-slide-down/03-top-down-dp.md" target="_blank" rel="noopener noreferrer" class="theme-edit-this-page"><svg fill="currentColor" height="20" width="20" viewBox="0 0 40 40" class="iconEdit_Z9Sw" aria-hidden="true"><g><path d="m34.5 11.7l-3 3.1-6.3-6.3 3.1-3q0.5-0.5 1.2-0.5t1.1 0.5l3.9 3.9q0.5 0.4 0.5 1.1t-0.5 1.2z m-29.5 17.1l18.4-18.5 6.3 6.3-18.4 18.4h-6.3v-6.2z"></path></g></svg>Edit this page</a></div><div class="col lastUpdated_vwxv"><span class="theme-last-updated">Last updated<!-- --> on <b><time datetime="2023-12-28T17:53:44.000Z">Dec 28, 2023</time></b></span></div></div></footer></article><nav class="pagination-nav docusaurus-mt-lg" aria-label="Docs pages"><a class="pagination-nav__link pagination-nav__link--prev" href="/algorithms/recursion/pyramid-slide-down/greedy/"><div class="pagination-nav__sublabel">Previous</div><div class="pagination-nav__label">Greedy solution</div></a><a class="pagination-nav__link pagination-nav__link--next" href="/algorithms/recursion/pyramid-slide-down/bottom-up-dp/"><div class="pagination-nav__sublabel">Next</div><div class="pagination-nav__label">Bottom-up DP solution</div></a></nav></div></div><div class="col col--3"><div class="tableOfContents_bqdL thin-scrollbar theme-doc-toc-desktop"><ul class="table-of-contents table-of-contents__left-border"><li><a href="#time-complexity" class="table-of-contents__link toc-highlight">Time complexity</a></li><li><a href="#memory-complexity" class="table-of-contents__link toc-highlight">Memory complexity</a></li></ul></div></div></div></div></main></div></div></div><footer class="footer footer--dark"><div class="container container-fluid"><div class="row footer__links"><div class="col footer__col"><div class="footer__title">Git</div><ul class="footer__items clean-list"><li class="footer__item"><a href="https://github.com/mfocko" target="_blank" rel="noopener noreferrer" class="footer__link-item">GitHub<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li><li class="footer__item"><a href="https://gitlab.com/mfocko" target="_blank" rel="noopener noreferrer" class="footer__link-item">GitLab<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li><li class="footer__item"><a href="https://git.mfocko.xyz/mfocko" target="_blank" rel="noopener noreferrer" class="footer__link-item">Gitea (self-hosted)<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li></ul></div><div class="col footer__col"><div class="footer__title">Social #1</div><ul class="footer__items clean-list"><li class="footer__item"><a href="https://www.linkedin.com/in/mfocko/" target="_blank" rel="noopener noreferrer" class="footer__link-item">LinkedIn<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="
|
|||
|
</body>
|
|||
|
</html>
|