<titledata-rh="true">Distance boundaries from BFS tree on undirected graphs | mf</title><metadata-rh="true"name="viewport"content="width=device-width,initial-scale=1"><metadata-rh="true"name="twitter:card"content="summary_large_image"><metadata-rh="true"property="og:url"content="https://blog.mfocko.xyz/algorithms/graphs/bfs-tree/"><metadata-rh="true"property="og:locale"content="en"><metadata-rh="true"name="docusaurus_locale"content="en"><metadata-rh="true"name="docsearch:language"content="en"><metadata-rh="true"name="docusaurus_version"content="current"><metadata-rh="true"name="docusaurus_tag"content="docs-algorithms-current"><metadata-rh="true"name="docsearch:version"content="current"><metadata-rh="true"name="docsearch:docusaurus_tag"content="docs-algorithms-current"><metadata-rh="true"property="og:title"content="Distance boundaries from BFS tree on undirected graphs | mf"><metadata-rh="true"name="description"content="ShortexplanationofdistanceboundariesdeducedfromaBFStree.
<script>!function(){functiont(t){document.documentElement.setAttribute("data-theme",t)}vare=function(){try{returnnewURLSearchParams(window.location.search).get("docusaurus-theme")}catch(t){}}()||function(){try{returnlocalStorage.getItem("theme")}catch(t){}}();t(null!==e?e:"light")}(),function(){try{constc=newURLSearchParams(window.location.search).entries();for(var[t,e]ofc)if(t.startsWith("docusaurus-data-")){vara=t.replace("docusaurus-data-","data-");document.documentElement.setAttribute(a,e)}}catch(t){}}()</script><divid="__docusaurus"><divrole="region"aria-label="Skip to main content"><aclass="skipToContent_fXgn"href="#__docusaurus_skipToContent_fallback">Skip to main content</a></div><navaria-label="Main"class="navbar navbar--fixed-top"><divclass="navbar__inner"><divclass="navbar__items"><buttonaria-label="Toggle navigation bar"aria-expanded="false"class="navbar__toggle clean-btn"type="button"><svgwidth="30"height="30"viewBox="0 0 30 30"aria-hidden="true"><pathstroke="currentColor"stroke-linecap="round"stroke-miterlimit="10"stroke-width="2"d="M4 7h22M4 15h22M4 23h22"></path></svg></button><aclass="navbar__brand"href="/"><bclass="navbar__title text--truncate">mf</b></a><divclass="navbar__item dropdown dropdown--hoverable"><ahref="#"aria-haspopup="true"aria-expanded="false"role="button"class="navbar__link">Additional FI MU materials</a><ulclass="dropdown__menu"><li><aaria-current="page"class="dropdown__link dropdown__link--active"href="/algorithms/">Algorithms</a></li><li><aclass="dropdown__link"href="/c/">C</a></li><li><aclass="dropdown__link"href="/cpp/">C++</a></li></ul></div><aclass="navbar__item navbar__link"href="/contributions/">Contributions</a><aclass="navbar__item navbar__link"href="/talks/">Talks</a></div><divclass="navbar__items navbar__items--right"><aclass="navbar__item navbar__link"href="/blog/">Blog</a><divclass="toggle_vylO colorModeToggle_DEke"><buttonclass="clean-btn toggleButton_gllP toggleButtonDisabled_aARS"type="button"disabled=""title="Switch between dark and light mode (currently light mode)"aria-label="Switch between dark and light mode (currently light mode)"aria-live="polite"><svgviewBox="0 0 24 24"width="24"height="24"class="lightToggleIcon_pyhR"><pathfill="currentColor"d="M12,9c1.65,0,3,1.35,3,3s-1.35,3-3,3s-3-1.35-3-3S10.35,9,12,9 M12,7c-2.76,0-5,2.24-5,5s2.24,5,5,5s5-2.24,5-5 S14.76,7,12,7L12,7z M2,13l2,0c0.55,0,1-0.45,1-1s-0.45-1-1-1l-2,0c-0.55,0-1,0.45-1,1S1.45,13,2,13z M20,13l2,0c0.55,0,1-0.45,1-1 s-0.45-1-1-1l-2,0c-0.55,0-1,0.45-1,1S19.45,13,20,13z M11,2v2c0,0.55,0.45,1,1,1s1-0.45,1-1V2c0-0.55-0.45-1-1-1S11,1.45,11,2z M11,20v2c0,0.55,0.45,1,1,1s1-0.45,1-1v-2c0-0.55-0.45-1-1-1C11.45,19,11,19.45,11,20z M5.99,4.58c-0.39-0.39-1.03-0.39-1.41,0 c-0.39,0.39-0.39,1.03,0,1.41l1.06,1.06c0.39,0.39,1.03,0.39,1.41,0s0.39-1.03,0-1.41L5.99,4.58z M18.36,16.95 c-0.39-0.39-1.03-0.39-1.41,0c-0.39,0.39-0.39,1.03,0,1.41l1.06,1.06c0.39,0.39,1.03,0.39,1.41,0c0.39-0.39,0.39-1.03,0-1.41 L18.36,16.95z M19.42,5.99c0.39-0.39,0.39-1.03,0-1.41c-0.39-0.39-1.03-0.39-1.41,0l-1.06,1.06c-0.39,0.39-0.39,1.03,0,1.41 s1.03,0.39,1.41,0L19.42,5.99z M7.05,18.36c0.39-0.39,0.39-1.03,0-1.41c-0.39-0.39-1.03-0.39-1.41,0l-1.06,1.06 c-0.39,0.39-0.39,1.03,0,1.41s1.03,0.39,1.41,0L7.05,18.36z"></path></svg><svgviewBox="0 0 24 24"width="24"height="24"class="darkToggleIcon_wfgR"><pathfill="currentColor"d="M9.37,5.51C9.19,6.15,9.1,6.82,9.1,7.5c0,4.08,3.32,7.4,7.4,7.4c0.68,0,1.35-0.09,1.99-0.27C17.45,17.19,14.93,19,12,19 c-3.86,0-7-3.14-7-7C5,9.07,6.81,6.55,9.37,5.51z M12,3c-4.97,0-9,4.03-9,9s4.03,9,9,9s9-4.03,9-9c0-0.46-0.04-0.92-0.1-1.36 c-0.98,1.37-2.58,2.26-4.4,2.26c-2.98,0-5.4-2.42-5.4-5.4c0-1.81,0.89-3.42,2.26-4.4C12.92,3.04,12.46,3,12,3L12,3z"></path></svg></button></div><divclass="navbarSearchContainer_Bca1"><buttontype="button"class="DocSearch DocSearch-Button"aria-label="Search"><spanclass="DocSearch-Button-Container"><svgwidth="20"height="20"class="DocSearch-Search-Icon"viewBox="0 0 20 20"><pathd="M14.38614.386l4.08774.0877-4.0877-4.0877c-2.
<p>As we have talked on the seminar, if we construct from some vertex <spanclass="katex"><spanclass="katex-mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi></mrow><annotationencoding="application/x-tex">u</annotation></semantics></math></span><spanclass="katex-html"aria-hidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em"></span><spanclass="mord mathnormal">u</span></span></span></span> BFS tree on an undirected graph, we can obtain:</p>
<ul>
<li>lower bound of length of the shortest path between 2 vertices from the <em>height difference</em></li>
<li>upper bound of length of the shortest path between 2 vertices from the <em>path through the root</em></li>
</ul>
<h2class="anchor anchorWithStickyNavbar_LWe7"id="lower-bound">Lower bound<ahref="#lower-bound"class="hash-link"aria-label="Direct link to Lower bound"title="Direct link to Lower bound"></a></h2>
<p>We run BFS from the vertex <spanclass="katex"><spanclass="katex-mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotationencoding="application/x-tex">a</annotation></semantics></math></span><spanclass="katex-html"aria-hidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em"></span><spanclass="mord mathnormal">a</span></span></span></span> and obtain the following BFS tree:</p>
<p>Let's consider pair of vertices <spanclass="katex"><spanclass="katex-mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>e</mi></mrow><annotationencoding="application/x-tex">e</annotation></semantics></math></span><spanclass="katex-html"aria-hidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em"></span><spanclass="mord mathnormal">e</span></span></span></span> and <spanclass="katex"><spanclass="katex-mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>h</mi></mrow><annotationencoding="application/x-tex">h</annotation></semantics></math></span><spanclass="katex-html"aria-hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6944em"></span><spanclass="mord mathnormal">h</span></span></span></span>. For them we can safely lay, from the BFS tree, following properties:</p>
<p>By having a look at the graph we started from, we can see that we have a path ‹<spanclass="katex"><spanclass="katex-mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>e</mi><moseparator="true">,</mo><mi>j</mi><moseparator="true">,</mo><mi>h</mi></mrow><annotationencoding="application/x-tex">e, j, h</annotation></semantics></math></span><spanclass="katex-html"aria-hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8889em;vertical-align:-0.1944em"></span><spanclass="mord mathnormal">e</span><spanclass="mpunct">,</span><spanclass="mspace"style="margin-right:0.1667em"></span><spanclass="mord mathnormal"style="margin-right:0.05724em">j</span><spanclass="mpunct">,</span><spanclass="mspace"style="margin-right:0.1667em"></span><spanclass="mord mathnormal">h</span></span></span></span>› that has a length 2. Apart from that we can also notice there is another path from <spanclass="katex"><spanclass="katex-mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>e</mi></mrow><annotationencoding="application/x-tex">e</annotation></semantics></math></span><spanclass="katex-html"aria-hidden="true"><spanclass="base"><spanclass="strut"style="height:0.4306em"></span><spanclass="mord mathnormal">e</span></span></span></span> to <spanclass="katex"><spanclass="katex-mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>h</mi></mrow><annotationencoding="application/x-tex">h</annotation></semantics></math></span><spanclass="katex-html"aria-hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6944em"></span><spanclass="mord mathnormal">h</span></span></span></span> and that is ‹<spanclass="katex"><spanclass="katex-mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>e</mi><moseparator="true">,</mo><mi>a</mi><moseparator="true">,</mo><mi>c</mi><moseparator="true">,</mo><mi>i</mi><moseparator="true">,</mo><mi>d</mi><moseparator="true">,</mo><mi>h</mi></mrow><annotationencoding="application/x-tex">e, a, c, i, d, h</annotation></semantics></math></span><spanclass="katex-html"aria-hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8889em;vertical-align:-0.1944em"></span><spanclass="mord mathnormal">e</span><spanclass="mpunct">,</span><spanclass="mspace"style="margin-right:0.1667em"></span><spanclass="mord mathnormal">a</span><spanclass="mpunct">,</span><spanclass="mspace"style="margin-right:0.1667em"></span><spanclass="mord mathnormal">c</span><spanclass="mpunct">,</span><spanclass="mspace"style="margin-right:0.1667em"></span><spanclass="mord mathnormal">i</span><spanclass="mpunct">,</span><spanclass="mspace"style="margin-right:0.1667em"></span><spanclass="mord mathnormal">d</span><spanclass="mpunct">,</span><spanclass="mspace"style="margin-right:0.1667em"></span><spanclass="mord mathnormal">h</span></span></span></span>›. And that path has a length of <spanclass="katex"><spanclass="katex-mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>5</mn></mrow><annotationencoding="application/x-tex">5</annotation></semantics></math></span><spanclass="katex-html"aria-hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6444em"></span><spanclass="mord">5</span></span></span></span>. Doesn't this break our statements at the beginning? (<em>I'm leaving that as an exercise ;)</em>)</p>
<h2class="anchor anchorWithStickyNavbar_LWe7"id="proof-by-contradiction">Proof by contradiction<ahref="#proof-by-contradiction"class="hash-link"aria-label="Direct link to Proof by contradiction"title="Direct link to Proof by contradiction"></a></h2>
<p>Let's keep the same graph, but break the lower bound, i.e. I have gotten a lower bound <spanclass="katex"><spanclass="katex-mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn></mrow><annotationencoding="application/x-tex">2</annotation></semantics></math></span><spanclass="katex-html"aria-hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6444em"></span><spanclass="mord">2</span></span></span></span>, but “there must be a shorter path”! ;)</p>
<p>Now the more important question, is there a shorter path in that graph? The answer is no, there's no shorter path than the one with length <spanclass="katex"><spanclass="katex-mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn></mrow><annotationencoding="application/x-tex">2</annotation></semantics></math></span><spanclass="katex-html"aria-hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6444em"></span><spanclass="mord">2</span></span></span></span>. So what can we do about it? We'll add an edge to have a shorter path. Now we have gotten a lower bound of <spanclass="katex"><spanclass="katex-mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn></mrow><annotationencoding="application/x-tex">2</annotation></semantics></math></span><spanclass="katex-html"aria-hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6444em"></span><spanclass="mord">2</span></span></span></span>, which means the only shorter path we can construct has <spanclass="katex"><spanclass="katex-mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn></mrow><annotationencoding="application/x-tex">1</annotation></semantics></math></span><spanclass="katex-html"aria-hidden="true"><spanclass="base"><spanclass="strut"style="height:0.6444em"></span><spanclass="mord">1</span></span></span></span> edge and that is ‹<spanclass="katex"><spanclass="katex-mathml"><mathxmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>e</mi><moseparator="true">,</mo><mi>h</mi></mrow><annotationencoding="application/x-tex">e, h</annotation></semantics></math></span><spanclass="katex-html"aria-hidden="true"><spanclass="base"><spanclass="strut"style="height:0.8889em;vertical-align:-0.1944em"></span><spanclass="mord mathnormal">e</span><spanclass="mpunct">,</span><spanclass="mspace"style="margin-right:0.1667em"></span><spanclass="mord mathnormal">h</span></span></span></span>› (no intermediary vertices). Let's do this!</p>
<p>Okay, so we have a graph that breaks the rule we have laid. However, we need to run BFS to obtain the new BFS tree, since we have changed the graph.</p>
<divclass="theme-admonition theme-admonition-tip admonition_xJq3 alert alert--success"><divclass="admonitionHeading_Gvgb"><spanclass="admonitionIcon_Rf37"><svgviewBox="0 0 12 16"><pathfill-rule="evenodd"d="M6.5 0C3.48 0 1 2.19 1 5c0 .92.55 2.25 1 3 1.34 2.25 1.78 2.78 2 4v1h5v-1c.22-1.22.66-1.75 2-4 .45-.75 1-2.08 1-3 0-2.81-2.48-5-5.5-5zm3.64 7.48c-.25.44-.47.8-.67 1.11-.86 1.41-1.25 2.06-1.45 3.23-.02.05-.02.11-.02.17H5c0-.06 0-.13-.02-.17-.2-1.17-.59-1.83-1.45-3.23-.2-.31-.42-.67-.67-1.11C2.44 6.78 2 5.65 2 5c0-2.2 2.02-4 4.5-4 1.22 0 2.36.42 3.22 1.19C10.55 2.94 11 3.94 11 5c0 .66-.44 1.78-.86 2.48zM4 14h5c-.23 1.14-1.3 2-2.5 2s-2.27-.86-2.5-2z"></path></svg></span>tip</div><divclass="admonitionContent_BuS1"><p>Do we need to run BFS after <strong>every</strong> change?</p><p>I am leaving that as an exercise ;)</p></div></div>