2023-11-24 16:55:55 +01:00
<!doctype html>
< html lang = "en" dir = "ltr" class = "docs-wrapper plugin-docs plugin-id-algorithms docs-version-current docs-doc-page docs-doc-id-graphs/bfs-tree" data-has-hydrated = "false" >
< head >
< meta charset = "UTF-8" >
2023-12-28 18:55:58 +01:00
< meta name = "generator" content = "Docusaurus v3.0.1" >
2023-11-24 16:55:55 +01:00
< title data-rh = "true" > Distance boundaries from BFS tree on undirected graphs | mf< / title > < meta data-rh = "true" name = "viewport" content = "width=device-width,initial-scale=1" > < meta data-rh = "true" name = "twitter:card" content = "summary_large_image" > < meta data-rh = "true" property = "og:url" content = "https://blog.mfocko.xyz/algorithms/graphs/bfs-tree/" > < meta data-rh = "true" property = "og:locale" content = "en" > < meta data-rh = "true" name = "docusaurus_locale" content = "en" > < meta data-rh = "true" name = "docsearch:language" content = "en" > < meta data-rh = "true" name = "docusaurus_version" content = "current" > < meta data-rh = "true" name = "docusaurus_tag" content = "docs-algorithms-current" > < meta data-rh = "true" name = "docsearch:version" content = "current" > < meta data-rh = "true" name = "docsearch:docusaurus_tag" content = "docs-algorithms-current" > < meta data-rh = "true" property = "og:title" content = "Distance boundaries from BFS tree on undirected graphs | mf" > < meta data-rh = "true" name = "description" content = "Short explanation of distance boundaries deduced from a BFS tree .
">< meta data-rh = "true" property = "og:description" content = "Short explanation of distance boundaries deduced from a BFS tree .
">< link data-rh = "true" rel = "icon" href = "/img/favicon.ico" > < link data-rh = "true" rel = "canonical" href = "https://blog.mfocko.xyz/algorithms/graphs/bfs-tree/" > < link data-rh = "true" rel = "alternate" href = "https://blog.mfocko.xyz/algorithms/graphs/bfs-tree/" hreflang = "en" > < link data-rh = "true" rel = "alternate" href = "https://blog.mfocko.xyz/algorithms/graphs/bfs-tree/" hreflang = "x-default" > < link data-rh = "true" rel = "preconnect" href = "https://0VXRFPR4QF-dsn.algolia.net" crossorigin = "anonymous" > < link rel = "search" type = "application/opensearchdescription+xml" title = "mf" href = "/opensearch.xml" >
< link rel = "alternate" type = "application/rss+xml" href = "/blog/rss.xml" title = "mf RSS Feed" >
< link rel = "alternate" type = "application/atom+xml" href = "/blog/atom.xml" title = "mf Atom Feed" >
< link rel = "alternate" type = "application/json" href = "/blog/feed.json" title = "mf JSON Feed" >
2023-12-28 18:55:58 +01:00
< link rel = "stylesheet" href = "https://cdn.jsdelivr.net/npm/katex@0.13.24/dist/katex.min.css" integrity = "sha384-odtC+0UGzzFL/6PNoE8rX/SPcQDXBJ+uRepguP4QkPCm2LBxH3FA3y+fKSiJ+AmM" crossorigin = "anonymous" > < link rel = "stylesheet" href = "/assets/css/styles.e1ac7597.css" >
2024-01-06 17:30:44 +01:00
< script src = "/assets/js/runtime~main.3f39a938.js" defer = "defer" > < / script >
2024-01-03 15:14:53 +01:00
< script src = "/assets/js/main.2a166133.js" defer = "defer" > < / script >
2023-11-24 16:55:55 +01:00
< / head >
< body class = "navigation-with-keyboard" >
2024-01-03 15:14:53 +01:00
< script > ! function ( ) { function t ( t ) { document . documentElement . setAttribute ( "data-theme" , t ) } var e = function ( ) { try { return new URLSearchParams ( window . location . search ) . get ( "docusaurus-theme" ) } catch ( t ) { } } ( ) || function ( ) { try { return localStorage . getItem ( "theme" ) } catch ( t ) { } } ( ) ; t ( null !== e ? e : "light" ) } ( ) , function ( ) { try { const c = new URLSearchParams ( window . location . search ) . entries ( ) ; for ( var [ t , e ] of c ) if ( t . startsWith ( "docusaurus-data-" ) ) { var a = t . replace ( "docusaurus-data-" , "data-" ) ; document . documentElement . setAttribute ( a , e ) } } catch ( t ) { } } ( ) < / script > < div id = "__docusaurus" > < div role = "region" aria-label = "Skip to main content" > < a class = "skipToContent_fXgn" href = "#__docusaurus_skipToContent_fallback" > Skip to main content< / a > < / div > < nav aria-label = "Main" class = "navbar navbar--fixed-top" > < div class = "navbar__inner" > < div class = "navbar__items" > < button aria-label = "Toggle navigation bar" aria-expanded = "false" class = "navbar__toggle clean-btn" type = "button" > < svg width = "30" height = "30" viewBox = "0 0 30 30" aria-hidden = "true" > < path stroke = "currentColor" stroke-linecap = "round" stroke-miterlimit = "10" stroke-width = "2" d = "M4 7h22M4 15h22M4 23h22" > < / path > < / svg > < / button > < a class = "navbar__brand" href = "/" > < b class = "navbar__title text--truncate" > mf< / b > < / a > < div class = "navbar__item dropdown dropdown--hoverable" > < a href = "#" aria-haspopup = "true" aria-expanded = "false" role = "button" class = "navbar__link" > Additional FI MU materials< / a > < ul class = "dropdown__menu" > < li > < a aria-current = "page" class = "dropdown__link dropdown__link--active" href = "/algorithms/" > Algorithms< / a > < / li > < li > < a class = "dropdown__link" href = "/c/" > C< / a > < / li > < li > < a class = "dropdown__link" href = "/cpp/" > C++< / a > < / li > < / ul > < / div > < a class = "navbar__item navbar__link" href = "/contributions/" > Contributions< / a > < a class = "navbar__item navbar__link" href = "/talks/" > Talks< / a > < / div > < div class = "navbar__items navbar__items--right" > < a class = "navbar__item navbar__link" href = "/blog/" > Blog< / a > < div class = "toggle_vylO colorModeToggle_DEke" > < button class = "clean-btn toggleButton_gllP toggleButtonDisabled_aARS" type = "button" disabled = "" title = "Switch between dark and light mode (currently light mode)" aria-label = "Switch between dark and light mode (currently light mode)" aria-live = "polite" > < svg viewBox = "0 0 24 24" width = "24" height = "24" class = "lightToggleIcon_pyhR" > < path fill = "currentColor" d = "M12,9c1.65,0,3,1.35,3,3s-1.35,3-3,3s-3-1.35-3-3S10.35,9,12,9 M12,7c-2.76,0-5,2.24-5,5s2.24,5,5,5s5-2.24,5-5 S14.76,7,12,7L12,7z M2,13l2,0c0.55,0,1-0.45,1-1s-0.45-1-1-1l-2,0c-0.55,0-1,0.45-1,1S1.45,13,2,13z M20,13l2,0c0.55,0,1-0.45,1-1 s-0.45-1-1-1l-2,0c-0.55,0-1,0.45-1,1S19.45,13,20,13z M11,2v2c0,0.55,0.45,1,1,1s1-0.45,1-1V2c0-0.55-0.45-1-1-1S11,1.45,11,2z M11,20v2c0,0.55,0.45,1,1,1s1-0.45,1-1v-2c0-0.55-0.45-1-1-1C11.45,19,11,19.45,11,20z M5.99,4.58c-0.39-0.39-1.03-0.39-1.41,0 c-0.39,0.39-0.39,1.03,0,1.41l1.06,1.06c0.39,0.39,1.03,0.39,1.41,0s0.39-1.03,0-1.41L5.99,4.58z M18.36,16.95 c-0.39-0.39-1.03-0.39-1.41,0c-0.39,0.39-0.39,1.03,0,1.41l1.06,1.06c0.39,0.39,1.03,0.39,1.41,0c0.39-0.39,0.39-1.03,0-1.41 L18.36,16.95z M19.42,5.99c0.39-0.39,0.39-1.03,0-1.41c-0.39-0.39-1.03-0.39-1.41,0l-1.06,1.06c-0.39,0.39-0.39,1.03,0,1.41 s1.03,0.39,1.41,0L19.42,5.99z M7.05,18.36c0.39-0.39,0.39-1.03,0-1.41c-0.39-0.39-1.03-0.39-1.41,0l-1.06,1.06 c-0.39,0.39-0.39,1.03,0,1.41s1.03,0.39,1.41,0L7.05,18.36z" > < / path > < / svg > < svg viewBox = "0 0 24 24" width = "24" height = "24" class = "darkToggleIcon_wfgR" > < path fill = "currentColor" d = "M9.37,5.51C9.19,6.15,9.1,6.82,9.1,7.5c0,4.08,3.32,7.4,7.4,7.4c0.68,0,1.35-0.09,1.99-0.27C17.45,17.19,14.93,19,12,19 c-3.86,0-7-3.14-7-7C5,9.07,6.81,6.55,9.37,5.51z M12,3c-4.97,0-9,4.03-9,9s4.03,9,9,9s9-4.03,9-9c0-0.46-0.04-0.92-0.1-1.36 c-0.98,1.37-2.58,2.26-4.4,2.26c-2.98,0-5.4-2.42-5.4-5.4c0-1.81,0.89-3.42,2.26-4.4C12.92,3.04,12.46,3,12,3L12,3z" > < / path > < / svg > < / button > < / div > < div class = "navbarSearchContainer_Bca1" > < button type = "button" class = "DocSearch DocSearch-Button" aria-label = "Search" > < span class = "DocSearch-Button-Container" > < svg width = "20" height = "20" class = "DocSearch-Search-Icon" viewBox = "0 0 20 20" > < path d = "M14.386 14 . 386l4 . 0877 4 . 0877-4 . 0877-4 . 0877c-2 .
2023-11-24 16:55:55 +01:00
< p > As we have talked on the seminar, if we construct from some vertex < span class = "katex" > < span class = "katex-mathml" > < math xmlns = "http://www.w3.org/1998/Math/MathML" > < semantics > < mrow > < mi > u< / mi > < / mrow > < annotation encoding = "application/x-tex" > u< / annotation > < / semantics > < / math > < / span > < span class = "katex-html" aria-hidden = "true" > < span class = "base" > < span class = "strut" style = "height:0.4306em" > < / span > < span class = "mord mathnormal" > u< / span > < / span > < / span > < / span > BFS tree on an undirected graph, we can obtain:< / p >
< ul >
< li > lower bound of length of the shortest path between 2 vertices from the < em > height difference< / em > < / li >
< li > upper bound of length of the shortest path between 2 vertices from the < em > path through the root< / em > < / li >
< / ul >
< h2 class = "anchor anchorWithStickyNavbar_LWe7" id = "lower-bound" > Lower bound< a href = "#lower-bound" class = "hash-link" aria-label = "Direct link to Lower bound" title = "Direct link to Lower bound" > < / a > < / h2 >
< p > Consider the following graph:< / p >
< p > < img loading = "lazy" src = "
< img loading = "lazy" src = "
< p > We run BFS from the vertex < span class = "katex" > < span class = "katex-mathml" > < math xmlns = "http://www.w3.org/1998/Math/MathML" > < semantics > < mrow > < mi > a< / mi > < / mrow > < annotation encoding = "application/x-tex" > a< / annotation > < / semantics > < / math > < / span > < span class = "katex-html" aria-hidden = "true" > < span class = "base" > < span class = "strut" style = "height:0.4306em" > < / span > < span class = "mord mathnormal" > a< / span > < / span > < / span > < / span > and obtain the following BFS tree:< / p >
< p > < img loading = "lazy" src = "
< img loading = "lazy" src = "
< p > Let' s consider pair of vertices < span class = "katex" > < span class = "katex-mathml" > < math xmlns = "http://www.w3.org/1998/Math/MathML" > < semantics > < mrow > < mi > e< / mi > < / mrow > < annotation encoding = "application/x-tex" > e< / annotation > < / semantics > < / math > < / span > < span class = "katex-html" aria-hidden = "true" > < span class = "base" > < span class = "strut" style = "height:0.4306em" > < / span > < span class = "mord mathnormal" > e< / span > < / span > < / span > < / span > and < span class = "katex" > < span class = "katex-mathml" > < math xmlns = "http://www.w3.org/1998/Math/MathML" > < semantics > < mrow > < mi > h< / mi > < / mrow > < annotation encoding = "application/x-tex" > h< / annotation > < / semantics > < / math > < / span > < span class = "katex-html" aria-hidden = "true" > < span class = "base" > < span class = "strut" style = "height:0.6944em" > < / span > < span class = "mord mathnormal" > h< / span > < / span > < / span > < / span > . For them we can safely lay, from the BFS tree, following properties:< / p >
< ul >
< li > lower bound: < span class = "katex" > < span class = "katex-mathml" > < math xmlns = "http://www.w3.org/1998/Math/MathML" > < semantics > < mrow > < mn > 2< / mn > < / mrow > < annotation encoding = "application/x-tex" > 2< / annotation > < / semantics > < / math > < / span > < span class = "katex-html" aria-hidden = "true" > < span class = "base" > < span class = "strut" style = "height:0.6444em" > < / span > < span class = "mord" > 2< / span > < / span > < / span > < / span > < / li >
< li > upper bound: < span class = "katex" > < span class = "katex-mathml" > < math xmlns = "http://www.w3.org/1998/Math/MathML" > < semantics > < mrow > < mn > 4< / mn > < / mrow > < annotation encoding = "application/x-tex" > 4< / annotation > < / semantics > < / math > < / span > < span class = "katex-html" aria-hidden = "true" > < span class = "base" > < span class = "strut" style = "height:0.6444em" > < / span > < span class = "mord" > 4< / span > < / span > < / span > < / span > < / li >
< / ul >
< p > By having a look at the graph we started from, we can see that we have a path ‹ < span class = "katex" > < span class = "katex-mathml" > < math xmlns = "http://www.w3.org/1998/Math/MathML" > < semantics > < mrow > < mi > e< / mi > < mo separator = "true" > ,< / mo > < mi > j< / mi > < mo separator = "true" > ,< / mo > < mi > h< / mi > < / mrow > < annotation encoding = "application/x-tex" > e, j, h< / annotation > < / semantics > < / math > < / span > < span class = "katex-html" aria-hidden = "true" > < span class = "base" > < span class = "strut" style = "height:0.8889em;vertical-align:-0.1944em" > < / span > < span class = "mord mathnormal" > e< / span > < span class = "mpunct" > ,< / span > < span class = "mspace" style = "margin-right:0.1667em" > < / span > < span class = "mord mathnormal" style = "margin-right:0.05724em" > j< / span > < span class = "mpunct" > ,< / span > < span class = "mspace" style = "margin-right:0.1667em" > < / span > < span class = "mord mathnormal" > h< / span > < / span > < / span > < / span > › that has a length 2. Apart from that we can also notice there is another path from < span class = "katex" > < span class = "katex-mathml" > < math xmlns = "http://www.w3.org/1998/Math/MathML" > < semantics > < mrow > < mi > e< / mi > < / mrow > < annotation encoding = "application/x-tex" > e< / annotation > < / semantics > < / math > < / span > < span class = "katex-html" aria-hidden = "true" > < span class = "base" > < span class = "strut" style = "height:0.4306em" > < / span > < span class = "mord mathnormal" > e< / span > < / span > < / span > < / span > to < span class = "katex" > < span class = "katex-mathml" > < math xmlns = "http://www.w3.org/1998/Math/MathML" > < semantics > < mrow > < mi > h< / mi > < / mrow > < annotation encoding = "application/x-tex" > h< / annotation > < / semantics > < / math > < / span > < span class = "katex-html" aria-hidden = "true" > < span class = "base" > < span class = "strut" style = "height:0.6944em" > < / span > < span class = "mord mathnormal" > h< / span > < / span > < / span > < / span > and that is ‹ < span class = "katex" > < span class = "katex-mathml" > < math xmlns = "http://www.w3.org/1998/Math/MathML" > < semantics > < mrow > < mi > e< / mi > < mo separator = "true" > ,< / mo > < mi > a< / mi > < mo separator = "true" > ,< / mo > < mi > c< / mi > < mo separator = "true" > ,< / mo > < mi > i< / mi > < mo separator = "true" > ,< / mo > < mi > d< / mi > < mo separator = "true" > ,< / mo > < mi > h< / mi > < / mrow > < annotation encoding = "application/x-tex" > e, a, c, i, d, h< / annotation > < / semantics > < / math > < / span > < span class = "katex-html" aria-hidden = "true" > < span class = "base" > < span class = "strut" style = "height:0.8889em;vertical-align:-0.1944em" > < / span > < span class = "mord mathnormal" > e< / span > < span class = "mpunct" > ,< / span > < span class = "mspace" style = "margin-right:0.1667em" > < / span > < span class = "mord mathnormal" > a< / span > < span class = "mpunct" > ,< / span > < span class = "mspace" style = "margin-right:0.1667em" > < / span > < span class = "mord mathnormal" > c< / span > < span class = "mpunct" > ,< / span > < span class = "mspace" style = "margin-right:0.1667em" > < / span > < span class = "mord mathnormal" > i< / span > < span class = "mpunct" > ,< / span > < span class = "mspace" style = "margin-right:0.1667em" > < / span > < span class = "mord mathnormal" > d< / span > < span class = "mpunct" > ,< / span > < span class = "mspace" style = "margin-right:0.1667em" > < / span > < span class = "mord mathnormal" > h< / span > < / span > < / span > < / span > › . And that path has a length of < span class = "katex" > < span class = "katex-mathml" > < math xmlns = "http://www.w3.org/1998/Math/MathML" > < semantics > < mrow > < mn > 5< / mn > < / mrow > < annotation encoding = "application/x-tex" > 5< / annotation > < / semantics > < / math > < / span > < span class = "katex-html" aria-hidden = "true" > < span class = "base" > < span class = "strut" style = "height:0.6444em" > < / span > < span class = "mord" > 5< / span > < / span > < / span > < / span > . Doesn' t this break our statements at the beginning? (< em > I' m leaving that as an exercise ;)< / em > )< / p >
< h2 class = "anchor anchorWithStickyNavbar_LWe7" id = "proof-by-contradiction" > Proof by contradiction< a href = "#proof-by-contradiction" class = "hash-link" aria-label = "Direct link to Proof by contradiction" title = "Direct link to Proof by contradiction" > < / a > < / h2 >
< p > Let' s keep the same graph, but break the lower bound, i.e. I have gotten a lower bound < span class = "katex" > < span class = "katex-mathml" > < math xmlns = "http://www.w3.org/1998/Math/MathML" > < semantics > < mrow > < mn > 2< / mn > < / mrow > < annotation encoding = "application/x-tex" > 2< / annotation > < / semantics > < / math > < / span > < span class = "katex-html" aria-hidden = "true" > < span class = "base" > < span class = "strut" style = "height:0.6444em" > < / span > < span class = "mord" > 2< / span > < / span > < / span > < / span > , but “there must be a shorter path”! ;)< / p >
< p > Now the more important question, is there a shorter path in that graph? The answer is no, there' s no shorter path than the one with length < span class = "katex" > < span class = "katex-mathml" > < math xmlns = "http://www.w3.org/1998/Math/MathML" > < semantics > < mrow > < mn > 2< / mn > < / mrow > < annotation encoding = "application/x-tex" > 2< / annotation > < / semantics > < / math > < / span > < span class = "katex-html" aria-hidden = "true" > < span class = "base" > < span class = "strut" style = "height:0.6444em" > < / span > < span class = "mord" > 2< / span > < / span > < / span > < / span > . So what can we do about it? We' ll add an edge to have a shorter path. Now we have gotten a lower bound of < span class = "katex" > < span class = "katex-mathml" > < math xmlns = "http://www.w3.org/1998/Math/MathML" > < semantics > < mrow > < mn > 2< / mn > < / mrow > < annotation encoding = "application/x-tex" > 2< / annotation > < / semantics > < / math > < / span > < span class = "katex-html" aria-hidden = "true" > < span class = "base" > < span class = "strut" style = "height:0.6444em" > < / span > < span class = "mord" > 2< / span > < / span > < / span > < / span > , which means the only shorter path we can construct has < span class = "katex" > < span class = "katex-mathml" > < math xmlns = "http://www.w3.org/1998/Math/MathML" > < semantics > < mrow > < mn > 1< / mn > < / mrow > < annotation encoding = "application/x-tex" > 1< / annotation > < / semantics > < / math > < / span > < span class = "katex-html" aria-hidden = "true" > < span class = "base" > < span class = "strut" style = "height:0.6444em" > < / span > < span class = "mord" > 1< / span > < / span > < / span > < / span > edge and that is ‹ < span class = "katex" > < span class = "katex-mathml" > < math xmlns = "http://www.w3.org/1998/Math/MathML" > < semantics > < mrow > < mi > e< / mi > < mo separator = "true" > ,< / mo > < mi > h< / mi > < / mrow > < annotation encoding = "application/x-tex" > e, h< / annotation > < / semantics > < / math > < / span > < span class = "katex-html" aria-hidden = "true" > < span class = "base" > < span class = "strut" style = "height:0.8889em;vertical-align:-0.1944em" > < / span > < span class = "mord mathnormal" > e< / span > < span class = "mpunct" > ,< / span > < span class = "mspace" style = "margin-right:0.1667em" > < / span > < span class = "mord mathnormal" > h< / span > < / span > < / span > < / span > › (no intermediary vertices). Let' s do this!< / p >
< p > < img loading = "lazy" src = "
< img loading = "lazy" src = "
< p > Okay, so we have a graph that breaks the rule we have laid. However, we need to run BFS to obtain the new BFS tree, since we have changed the graph.< / p >
< div class = "theme-admonition theme-admonition-tip admonition_xJq3 alert alert--success" > < div class = "admonitionHeading_Gvgb" > < span class = "admonitionIcon_Rf37" > < svg viewBox = "0 0 12 16" > < path fill-rule = "evenodd" d = "M6.5 0C3.48 0 1 2.19 1 5c0 .92.55 2.25 1 3 1.34 2.25 1.78 2.78 2 4v1h5v-1c.22-1.22.66-1.75 2-4 .45-.75 1-2.08 1-3 0-2.81-2.48-5-5.5-5zm3.64 7.48c-.25.44-.47.8-.67 1.11-.86 1.41-1.25 2.06-1.45 3.23-.02.05-.02.11-.02.17H5c0-.06 0-.13-.02-.17-.2-1.17-.59-1.83-1.45-3.23-.2-.31-.42-.67-.67-1.11C2.44 6.78 2 5.65 2 5c0-2.2 2.02-4 4.5-4 1.22 0 2.36.42 3.22 1.19C10.55 2.94 11 3.94 11 5c0 .66-.44 1.78-.86 2.48zM4 14h5c-.23 1.14-1.3 2-2.5 2s-2.27-.86-2.5-2z" > < / path > < / svg > < / span > tip< / div > < div class = "admonitionContent_BuS1" > < p > Do we need to run BFS after < strong > every< / strong > change?< / p > < p > I am leaving that as an exercise ;)< / p > < / div > < / div >
< p > < img loading = "lazy" src = "
< img loading = "lazy" src = "
< p > Oops, we have gotten a new BFS tree, that has a height difference of 1.< / p >
2024-01-03 15:14:53 +01:00
< div class = "theme-admonition theme-admonition-tip admonition_xJq3 alert alert--success" > < div class = "admonitionHeading_Gvgb" > < span class = "admonitionIcon_Rf37" > < svg viewBox = "0 0 12 16" > < path fill-rule = "evenodd" d = "M6.5 0C3.48 0 1 2.19 1 5c0 .92.55 2.25 1 3 1.34 2.25 1.78 2.78 2 4v1h5v-1c.22-1.22.66-1.75 2-4 .45-.75 1-2.08 1-3 0-2.81-2.48-5-5.5-5zm3.64 7.48c-.25.44-.47.8-.67 1.11-.86 1.41-1.25 2.06-1.45 3.23-.02.05-.02.11-.02.17H5c0-.06 0-.13-.02-.17-.2-1.17-.59-1.83-1.45-3.23-.2-.31-.42-.67-.67-1.11C2.44 6.78 2 5.65 2 5c0-2.2 2.02-4 4.5-4 1.22 0 2.36.42 3.22 1.19C10.55 2.94 11 3.94 11 5c0 .66-.44 1.78-.86 2.48zM4 14h5c-.23 1.14-1.3 2-2.5 2s-2.27-.86-2.5-2z" > < / path > < / svg > < / span > tip< / div > < div class = "admonitionContent_BuS1" > < p > Try to think about a way this can be generalized for shortening of minimal length 3 to minimal length 2 ;)< / p > < / div > < / div > < / div > < footer class = "theme-doc-footer docusaurus-mt-lg" > < div class = "theme-doc-footer-tags-row row margin-bottom--sm" > < div class = "col" > < b > Tags:< / b > < ul class = "tags_jXut padding--none margin-left--sm" > < li class = "tag_QGVx" > < a class = "tag_zVej tagRegular_sFm0" href = "/algorithms/tags/graphs/" > graphs< / a > < / li > < li class = "tag_QGVx" > < a class = "tag_zVej tagRegular_sFm0" href = "/algorithms/tags/bfs/" > bfs< / a > < / li > < / ul > < / div > < / div > < div class = "theme-doc-footer-edit-meta-row row" > < div class = "col" > < a href = "https://github.com/mfocko/blog/tree/main/algorithms/10-graphs/2022-04-30-bfs-tree.md" target = "_blank" rel = "noopener noreferrer" class = "theme-edit-this-page" > < svg fill = "currentColor" height = "20" width = "20" viewBox = "0 0 40 40" class = "iconEdit_Z9Sw" aria-hidden = "true" > < g > < path d = "m34.5 11.7l-3 3.1-6.3-6.3 3.1-3q0.5-0.5 1.2-0.5t1.1 0.5l3.9 3.9q0.5 0.4 0.5 1.1t-0.5 1.2z m-29.5 17.1l18.4-18.5 6.3 6.3-18.4 18.4h-6.3v-6.2z" > < / path > < / g > < / svg > Edit this page< / a > < / div > < div class = "col lastUpdated_vwxv" > < span class = "theme-last-updated" > Last updated<!-- --> on < b > < time datetime = "2022-04-30T00:00:00.000Z" > Apr 30, 2022< / time > < / b > < / span > < / div > < / div > < / footer > < / article > < nav class = "pagination-nav docusaurus-mt-lg" aria-label = "Docs pages" > < a class = "pagination-nav__link pagination-nav__link--prev" href = "/algorithms/graphs/iterative-and-iterators/" > < div class = "pagination-nav__sublabel" > Previous< / div > < div class = "pagination-nav__label" > Iterative algorithms via iterators< / div > < / a > < a class = "pagination-nav__link pagination-nav__link--next" href = "/algorithms/category/paths-in-graphs/" > < div class = "pagination-nav__sublabel" > Next< / div > < div class = "pagination-nav__label" > Paths in Graphs< / div > < / a > < / nav > < / div > < / div > < div class = "col col--3" > < div class = "tableOfContents_bqdL thin-scrollbar theme-doc-toc-desktop" > < ul class = "table-of-contents table-of-contents__left-border" > < li > < a href = "#introduction" class = "table-of-contents__link toc-highlight" > Introduction< / a > < / li > < li > < a href = "#lower-bound" class = "table-of-contents__link toc-highlight" > Lower bound< / a > < / li > < li > < a href = "#proof-by-contradiction" class = "table-of-contents__link toc-highlight" > Proof by contradiction< / a > < / li > < / ul > < / div > < / div > < / div > < / div > < / main > < / div > < / div > < / div > < footer class = "footer footer--dark" > < div class = "container container-fluid" > < div class = "row footer__links" > < div class = "col footer__col" > < div class = "footer__title" > Git< / div > < ul class = "footer__items clean-list" > < li class = "footer__item" > < a href = "https://github.com/mfocko" target = "_blank" rel = "noopener noreferrer" class = "footer__link-item" > GitHub< svg width = "13.5" height = "13.5" aria-hidden = "true" viewBox = "0 0 24 24" class = "iconExternalLink_nPIU" > < path fill = "currentColor" d = "M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z" > < / path > < / svg > < / a > < / li > < li class = "footer__item" > < a href = "https://gitlab.com/mfocko" target = "_blank" rel = "noopener noreferrer" class = "footer__link-item" > GitLab< svg width = "13.5" height = "13.5" aria-hidden = "true" viewBox = "0 0 24 24" class = "iconExternalLink_nPIU" > < path fill = "currentColor" d = "M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z" > < / path > < / svg > < / a > < / li > < li class = "footer__item" > < a href =
2023-11-24 16:55:55 +01:00
< / body >
< / html >