python/rbt.py
Matej Focko dc6905b5e2
fix(mypy): fix major issues with mypy
Signed-off-by: Matej Focko <mfocko@redhat.com>
2022-05-22 21:07:40 +02:00

179 lines
5 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from node import Node, Comparable
from ranked_tree import RankedTree, RotateFunction
import enum
import logging
from typing import Callable, Tuple, TypeVar, Optional
logger = logging.getLogger(__name__)
T = TypeVar("T", bound=Comparable)
class Colour(enum.IntEnum):
"""
Represents colour of the edge or node.
"""
Red = 0
Black = 1
def has_double_black(x: Optional[Node[T]]) -> bool:
"""
Checks for double black child of x.
Args:
x: Node to be checked.
Returns:
`true`, if `x` has a double black node, `false` otherwise.
"""
return x is not None and 2 in Node.differences(x)
class RBTree(RankedTree[T]):
def is_correct_node(
self, node: Optional[Node[T]], recursive: bool = True
) -> bool:
if not node:
return True
left, right = Node.differences(node)
if left not in (Colour.Red, Colour.Black):
# left subtree has invalid difference
return False
elif right not in (Colour.Red, Colour.Black):
# right subtree has invalid difference
return False
if Node.difference(node) == Colour.Red and (
left == Colour.Red or right == Colour.Red
):
# two consecutive red nodes
return False
return not recursive or (
self.is_correct_node(node.left)
and self.is_correct_node(node.right)
)
# region InsertRebalance
def _insert_rebalance_step(
self,
z: Node[T],
y: Optional[Node[T]],
right_child: Node[T],
rotate_left: RotateFunction[T],
rotate_right: RotateFunction[T],
) -> Node[T]:
p = z.parent
pp = p.parent
if y is not None and Node.difference(y) == Colour.Red:
# Case 1
# ======
# zs uncle y is red
pp.rank += Colour.Black
z = pp
elif z == right_child:
# Case 2
# ======
# zs uncle y is black and z is a right child
z = p
rotate_left(p)
else:
# Case 3
# ======
# zs uncle y is black and z is a left child
rotate_right(pp)
return z
def _insert_rebalance(self, z: Node[T]) -> None:
while z.parent is not None and Node.difference(z.parent) == Colour.Red:
p = z.parent
pp = p.parent
assert pp
if p == pp.left:
z = self._insert_rebalance_step(
z, pp.right, p.right, self.rotate_left, self.rotate_right
)
else:
z = self._insert_rebalance_step(
z, pp.left, p.left, self.rotate_right, self.rotate_left
)
# endregion InsertRebalance
# region DeleteRebalance
def _delete_rebalance_step(
self,
x: Node[T],
w: Node[T],
parent: Node[T],
right: Callable[[Node[T]], Optional[Node[T]]],
rotate_left: RotateFunction[T],
rotate_right: RotateFunction[T],
) -> Tuple[Optional[Node[T]], Optional[Node[T]]]:
if Node.difference(w) == Colour.Red:
# Case 1
# ======
# xs sibling w is red
rotate_left(parent)
w = right(parent)
if Node.differences(w) == (Colour.Black, Colour.Black):
# Case 2
# ======
# xs sibling w is black, and both of ws children are black
parent.rank -= Colour.Black
x = parent
else:
# Case 3
# ======
# xs sibling w is black,
# ws left child is red, and ws right child is black
if Node.difference(right(w), w) == Colour.Black:
rotate_right(w)
w = right(parent)
# Case 4
# ======
# xs sibling w is black, and ws right child is red
parent.rank -= Colour.Black
w.rank += Colour.Black
rotate_left(parent)
x = self.root
return x, (x.parent if x else None)
def _delete_rebalance(
self, node: Optional[Node[T]], parent: Optional[Node[T]]
) -> None:
if not node and not parent:
return
while node != self.root and has_double_black(parent):
if node == parent.left:
node, parent = self._delete_rebalance_step(
node,
parent.right,
parent,
lambda x: x.right,
self.rotate_left,
self.rotate_right,
)
else:
node, parent = self._delete_rebalance_step(
node,
parent.left,
parent,
lambda x: x.left,
self.rotate_right,
self.rotate_left,
)
# endregion DeleteRebalance