1851(rs): solve contest

* “A. Escalator Conversations”
* “B. Parity Sort”
* “C. Tiles Comeback”

Signed-off-by: Matej Focko <me@mfocko.xyz>
This commit is contained in:
Matej Focko 2023-07-25 23:06:22 +02:00
parent d7af3b2543
commit 9c74f2847d
Signed by: mfocko
GPG key ID: 7C47D46246790496
4 changed files with 2012 additions and 0 deletions

1279
1851/index.html Normal file

File diff suppressed because one or more lines are too long

236
1851/src/bin/a.rs Normal file
View file

@ -0,0 +1,236 @@
#![allow(unused_imports)]
// region use
use self::input::*;
use self::math::*;
use self::output::*;
use std::cmp::{max, min};
use std::collections::HashMap;
// endregion use
fn can_talk_to(m: i64, k: i64, vh: i64, heights: Vec<i64>) -> usize {
heights
.iter()
.filter(|&h| {
if (vh - h) % k != 0 {
return false;
}
let diff = (vh - h) / k;
(1..=m)
.filter(|a| 1 <= diff + a && diff + a <= m)
.any(|a| diff + a != a)
})
.count()
}
fn solve(s: &mut Scanner) {
let (n, m, k, h) = (
s.next::<usize>(),
s.next::<i64>(),
s.next::<i64>(),
s.next::<i64>(),
);
let heights = s.next_vec::<i64>(n);
println!("{}", can_talk_to(m, k, h, heights));
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn example_1() {
assert_eq!(1, 2);
}
}
// region runner
const SINGLE_TEST: bool = false;
fn main() {
let mut s = Scanner::new();
if SINGLE_TEST {
solve(&mut s)
} else {
let n = s.next::<usize>();
for _ in 0..n {
solve(&mut s)
}
}
}
// endregion runner
#[allow(dead_code)]
mod math {
const MOD: i64 = 1_000_000_007;
pub fn add(a: i64, b: i64) -> i64 {
(a + b) % MOD
}
pub fn sub(a: i64, b: i64) -> i64 {
((a - b) % MOD + MOD) % MOD
}
pub fn mul(a: i64, b: i64) -> i64 {
(a * b) % MOD
}
pub fn exp(b: i64, e: i64) -> i64 {
if e == 0 {
return 1;
}
let half = exp(b, e / 2);
if e % 2 == 0 {
return mul(half, half);
}
mul(half, mul(half, b))
}
/// A trait implementing the unsigned bit shifts.
pub trait UnsignedShift {
fn unsigned_shl(self, n: u32) -> Self;
fn unsigned_shr(self, n: u32) -> Self;
}
/// A trait implementing the integer square root.
pub trait ISqrt {
fn isqrt(&self) -> Self
where
Self: Sized,
{
self.isqrt_checked()
.expect("cannot calculate square root of negative number")
}
fn isqrt_checked(&self) -> Option<Self>
where
Self: Sized;
}
macro_rules! math_traits_impl {
($T:ty, $U: ty) => {
impl UnsignedShift for $T {
#[inline]
fn unsigned_shl(self, n: u32) -> Self {
((self as $U) << n) as $T
}
#[inline]
fn unsigned_shr(self, n: u32) -> Self {
((self as $U) >> n) as $T
}
}
impl ISqrt for $T {
#[inline]
fn isqrt_checked(&self) -> Option<Self> {
use core::cmp::Ordering;
match self.cmp(&<$T>::default()) {
// Hopefully this will be stripped for unsigned numbers (impossible condition)
Ordering::Less => return None,
Ordering::Equal => return Some(<$T>::default()),
_ => {}
}
// Compute bit, the largest power of 4 <= n
let max_shift: u32 = <$T>::default().leading_zeros() - 1;
let shift: u32 = (max_shift - self.leading_zeros()) & !1;
let mut bit = <$T>::try_from(1).unwrap().unsigned_shl(shift);
// Algorithm based on the implementation in:
// https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Binary_numeral_system_(base_2)
// Note that result/bit are logically unsigned (even if T is signed).
let mut n = *self;
let mut result = <$T>::default();
while bit != <$T>::default() {
if n >= (result + bit) {
n -= result + bit;
result = result.unsigned_shr(1) + bit;
} else {
result = result.unsigned_shr(1);
}
bit = bit.unsigned_shr(2);
}
Some(result)
}
}
};
}
math_traits_impl!(i8, u8);
math_traits_impl!(u8, u8);
math_traits_impl!(i16, u16);
math_traits_impl!(u16, u16);
math_traits_impl!(i32, u32);
math_traits_impl!(u32, u32);
math_traits_impl!(i64, u64);
math_traits_impl!(u64, u64);
math_traits_impl!(i128, u128);
math_traits_impl!(u128, u128);
math_traits_impl!(isize, usize);
math_traits_impl!(usize, usize);
}
#[allow(dead_code)]
mod output {
pub fn yes() {
println!("YES");
}
pub fn no() {
println!("NO");
}
pub fn yesno(ans: bool) {
println!("{}", if ans { "YES" } else { "NO" });
}
}
#[allow(dead_code)]
mod input {
use std::collections::VecDeque;
use std::io;
use std::str::FromStr;
pub struct Scanner {
buffer: VecDeque<String>,
}
impl Scanner {
pub fn new() -> Scanner {
Scanner {
buffer: VecDeque::new(),
}
}
pub fn next<T: FromStr>(&mut self) -> T {
if self.buffer.is_empty() {
let mut input = String::new();
io::stdin().read_line(&mut input).ok();
for word in input.split_whitespace() {
self.buffer.push_back(word.to_string())
}
}
let front = self.buffer.pop_front().unwrap();
front.parse::<T>().ok().unwrap()
}
pub fn next_vec<T: FromStr>(&mut self, n: usize) -> Vec<T> {
let mut arr = vec![];
for _ in 0..n {
arr.push(self.next::<T>());
}
arr
}
}
}

244
1851/src/bin/b.rs Normal file
View file

@ -0,0 +1,244 @@
#![allow(unused_imports)]
// region use
use self::input::*;
use self::math::*;
use self::output::*;
use std::cmp::{max, min};
use std::collections::HashMap;
// endregion use
fn can_sort(nums: Vec<i32>) -> bool {
let mut sorted_nums = nums.clone();
sorted_nums.sort();
nums.iter()
.zip(sorted_nums.iter())
.all(|(src, dst)| src % 2 == dst % 2)
}
fn solve(s: &mut Scanner) {
let n = s.next::<usize>();
let nums = s.next_vec::<i32>(n);
yesno(can_sort(nums));
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn example_1() {
assert!(can_sort(vec![7, 10, 1, 3, 2]));
}
#[test]
fn example_2() {
assert!(can_sort(vec![11, 9, 3, 5]));
}
#[test]
fn example_3() {
assert!(!can_sort(vec![11, 3, 15, 3, 2]));
}
#[test]
fn example_4() {
assert!(!can_sort(vec![10, 7, 8, 1, 2, 3]));
}
#[test]
fn example_5() {
assert!(can_sort(vec![10]));
}
#[test]
fn example_6() {
assert!(!can_sort(vec![6, 6, 4, 1, 6]));
}
}
// region runner
const SINGLE_TEST: bool = false;
fn main() {
let mut s = Scanner::new();
if SINGLE_TEST {
solve(&mut s)
} else {
let n = s.next::<usize>();
for _ in 0..n {
solve(&mut s)
}
}
}
// endregion runner
#[allow(dead_code)]
mod math {
const MOD: i64 = 1_000_000_007;
pub fn add(a: i64, b: i64) -> i64 {
(a + b) % MOD
}
pub fn sub(a: i64, b: i64) -> i64 {
((a - b) % MOD + MOD) % MOD
}
pub fn mul(a: i64, b: i64) -> i64 {
(a * b) % MOD
}
pub fn exp(b: i64, e: i64) -> i64 {
if e == 0 {
return 1;
}
let half = exp(b, e / 2);
if e % 2 == 0 {
return mul(half, half);
}
mul(half, mul(half, b))
}
/// A trait implementing the unsigned bit shifts.
pub trait UnsignedShift {
fn unsigned_shl(self, n: u32) -> Self;
fn unsigned_shr(self, n: u32) -> Self;
}
/// A trait implementing the integer square root.
pub trait ISqrt {
fn isqrt(&self) -> Self
where
Self: Sized,
{
self.isqrt_checked()
.expect("cannot calculate square root of negative number")
}
fn isqrt_checked(&self) -> Option<Self>
where
Self: Sized;
}
macro_rules! math_traits_impl {
($T:ty, $U: ty) => {
impl UnsignedShift for $T {
#[inline]
fn unsigned_shl(self, n: u32) -> Self {
((self as $U) << n) as $T
}
#[inline]
fn unsigned_shr(self, n: u32) -> Self {
((self as $U) >> n) as $T
}
}
impl ISqrt for $T {
#[inline]
fn isqrt_checked(&self) -> Option<Self> {
use core::cmp::Ordering;
match self.cmp(&<$T>::default()) {
// Hopefully this will be stripped for unsigned numbers (impossible condition)
Ordering::Less => return None,
Ordering::Equal => return Some(<$T>::default()),
_ => {}
}
// Compute bit, the largest power of 4 <= n
let max_shift: u32 = <$T>::default().leading_zeros() - 1;
let shift: u32 = (max_shift - self.leading_zeros()) & !1;
let mut bit = <$T>::try_from(1).unwrap().unsigned_shl(shift);
// Algorithm based on the implementation in:
// https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Binary_numeral_system_(base_2)
// Note that result/bit are logically unsigned (even if T is signed).
let mut n = *self;
let mut result = <$T>::default();
while bit != <$T>::default() {
if n >= (result + bit) {
n -= result + bit;
result = result.unsigned_shr(1) + bit;
} else {
result = result.unsigned_shr(1);
}
bit = bit.unsigned_shr(2);
}
Some(result)
}
}
};
}
math_traits_impl!(i8, u8);
math_traits_impl!(u8, u8);
math_traits_impl!(i16, u16);
math_traits_impl!(u16, u16);
math_traits_impl!(i32, u32);
math_traits_impl!(u32, u32);
math_traits_impl!(i64, u64);
math_traits_impl!(u64, u64);
math_traits_impl!(i128, u128);
math_traits_impl!(u128, u128);
math_traits_impl!(isize, usize);
math_traits_impl!(usize, usize);
}
#[allow(dead_code)]
mod output {
pub fn yes() {
println!("YES");
}
pub fn no() {
println!("NO");
}
pub fn yesno(ans: bool) {
println!("{}", if ans { "YES" } else { "NO" });
}
}
#[allow(dead_code)]
mod input {
use std::collections::VecDeque;
use std::io;
use std::str::FromStr;
pub struct Scanner {
buffer: VecDeque<String>,
}
impl Scanner {
pub fn new() -> Scanner {
Scanner {
buffer: VecDeque::new(),
}
}
pub fn next<T: FromStr>(&mut self) -> T {
if self.buffer.is_empty() {
let mut input = String::new();
io::stdin().read_line(&mut input).ok();
for word in input.split_whitespace() {
self.buffer.push_back(word.to_string())
}
}
let front = self.buffer.pop_front().unwrap();
front.parse::<T>().ok().unwrap()
}
pub fn next_vec<T: FromStr>(&mut self, n: usize) -> Vec<T> {
let mut arr = vec![];
for _ in 0..n {
arr.push(self.next::<T>());
}
arr
}
}
}

253
1851/src/bin/c.rs Normal file
View file

@ -0,0 +1,253 @@
#![allow(unused_imports)]
// region use
use self::input::*;
use self::math::*;
use self::output::*;
use std::cmp::{max, min};
use std::collections::HashMap;
// endregion use
fn exists_path(k: usize, tiles: Vec<i32>) -> bool {
let first = *tiles.first().expect("at least one tile");
let last = *tiles.last().expect("at least one tiles");
// dbg!(first, last);
let tiles_of_first = tiles.iter().filter(|&&t| t == first).count();
let tiles_of_last = tiles.iter().filter(|&&t| t == last).count();
// dbg!(tiles_of_first, tiles_of_last);
let last_of_first = tiles
.iter()
.enumerate()
.filter(|(_, &c)| c == first)
.nth(k - 1)
.map(|(i, _)| i)
.unwrap_or(tiles.len());
let first_of_last = tiles
.iter()
.enumerate()
.rev()
.filter(|(_, &c)| c == last)
.nth(k - 1)
.map(|(i, _)| i)
.unwrap_or(0);
// dbg!(last_of_first, first_of_last);
tiles.len() >= k
&& ((first == last && tiles_of_first >= k)
|| (first != last
&& tiles_of_first >= k
&& tiles_of_last >= k
&& last_of_first < first_of_last))
}
fn solve(s: &mut Scanner) {
let n = s.next::<usize>();
let k = s.next::<usize>();
let tiles = s.next_vec::<i32>(n);
yesno(exists_path(k, tiles));
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn example_1() {
assert_eq!(1, 2);
}
}
// region runner
const SINGLE_TEST: bool = false;
fn main() {
let mut s = Scanner::new();
if SINGLE_TEST {
solve(&mut s)
} else {
let n = s.next::<usize>();
for _ in 0..n {
solve(&mut s)
}
}
}
// endregion runner
#[allow(dead_code)]
mod math {
const MOD: i64 = 1_000_000_007;
pub fn add(a: i64, b: i64) -> i64 {
(a + b) % MOD
}
pub fn sub(a: i64, b: i64) -> i64 {
((a - b) % MOD + MOD) % MOD
}
pub fn mul(a: i64, b: i64) -> i64 {
(a * b) % MOD
}
pub fn exp(b: i64, e: i64) -> i64 {
if e == 0 {
return 1;
}
let half = exp(b, e / 2);
if e % 2 == 0 {
return mul(half, half);
}
mul(half, mul(half, b))
}
/// A trait implementing the unsigned bit shifts.
pub trait UnsignedShift {
fn unsigned_shl(self, n: u32) -> Self;
fn unsigned_shr(self, n: u32) -> Self;
}
/// A trait implementing the integer square root.
pub trait ISqrt {
fn isqrt(&self) -> Self
where
Self: Sized,
{
self.isqrt_checked()
.expect("cannot calculate square root of negative number")
}
fn isqrt_checked(&self) -> Option<Self>
where
Self: Sized;
}
macro_rules! math_traits_impl {
($T:ty, $U: ty) => {
impl UnsignedShift for $T {
#[inline]
fn unsigned_shl(self, n: u32) -> Self {
((self as $U) << n) as $T
}
#[inline]
fn unsigned_shr(self, n: u32) -> Self {
((self as $U) >> n) as $T
}
}
impl ISqrt for $T {
#[inline]
fn isqrt_checked(&self) -> Option<Self> {
use core::cmp::Ordering;
match self.cmp(&<$T>::default()) {
// Hopefully this will be stripped for unsigned numbers (impossible condition)
Ordering::Less => return None,
Ordering::Equal => return Some(<$T>::default()),
_ => {}
}
// Compute bit, the largest power of 4 <= n
let max_shift: u32 = <$T>::default().leading_zeros() - 1;
let shift: u32 = (max_shift - self.leading_zeros()) & !1;
let mut bit = <$T>::try_from(1).unwrap().unsigned_shl(shift);
// Algorithm based on the implementation in:
// https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Binary_numeral_system_(base_2)
// Note that result/bit are logically unsigned (even if T is signed).
let mut n = *self;
let mut result = <$T>::default();
while bit != <$T>::default() {
if n >= (result + bit) {
n -= result + bit;
result = result.unsigned_shr(1) + bit;
} else {
result = result.unsigned_shr(1);
}
bit = bit.unsigned_shr(2);
}
Some(result)
}
}
};
}
math_traits_impl!(i8, u8);
math_traits_impl!(u8, u8);
math_traits_impl!(i16, u16);
math_traits_impl!(u16, u16);
math_traits_impl!(i32, u32);
math_traits_impl!(u32, u32);
math_traits_impl!(i64, u64);
math_traits_impl!(u64, u64);
math_traits_impl!(i128, u128);
math_traits_impl!(u128, u128);
math_traits_impl!(isize, usize);
math_traits_impl!(usize, usize);
}
#[allow(dead_code)]
mod output {
pub fn yes() {
println!("YES");
}
pub fn no() {
println!("NO");
}
pub fn yesno(ans: bool) {
println!("{}", if ans { "YES" } else { "NO" });
}
}
#[allow(dead_code)]
mod input {
use std::collections::VecDeque;
use std::io;
use std::str::FromStr;
pub struct Scanner {
buffer: VecDeque<String>,
}
impl Scanner {
pub fn new() -> Scanner {
Scanner {
buffer: VecDeque::new(),
}
}
pub fn next<T: FromStr>(&mut self) -> T {
if self.buffer.is_empty() {
let mut input = String::new();
io::stdin().read_line(&mut input).ok();
for word in input.split_whitespace() {
self.buffer.push_back(word.to_string())
}
}
let front = self.buffer.pop_front().unwrap();
front.parse::<T>().ok().unwrap()
}
pub fn next_vec<T: FromStr>(&mut self, n: usize) -> Vec<T> {
let mut arr = vec![];
for _ in 0..n {
arr.push(self.next::<T>());
}
arr
}
}
}