use std::cmp; use std::collections::BinaryHeap; #[derive(Eq)] struct Fraction { num: i32, den: i32, num_idx: usize, den_idx: usize, } impl Fraction { fn new(primes: &[i32], num_idx: usize, den_idx: usize) -> Self { Self { num: primes[num_idx], den: primes[den_idx], num_idx, den_idx, } } } impl Ord for Fraction { fn cmp(&self, rhs: &Fraction) -> cmp::Ordering { let left = self.num * rhs.den; let right = rhs.num * self.den; left.cmp(&right) } } impl PartialOrd for Fraction { fn partial_cmp(&self, rhs: &Fraction) -> Option<cmp::Ordering> { Some(self.cmp(rhs)) } } impl PartialEq for Fraction { fn eq(&self, rhs: &Fraction) -> bool { self.num * rhs.den == rhs.num * self.den } } impl From<Fraction> for Vec<i32> { fn from(f: Fraction) -> Self { vec![f.num, f.den] } } struct Solution {} impl Solution { pub fn kth_smallest_prime_fraction(arr: Vec<i32>, k: i32) -> Vec<i32> { let mut heap: BinaryHeap<cmp::Reverse<Fraction>> = BinaryHeap::new(); let last = arr.len() - 1; for i in 0..arr.len() { heap.push(cmp::Reverse(Fraction::new(&arr, i, last))); } for _ in 1..k { let smallest = heap.pop().expect("There is always at least one fraction").0; if smallest.den_idx - 1 > smallest.num_idx { heap.push(cmp::Reverse(Fraction::new( &arr, smallest.num_idx, smallest.den_idx - 1, ))); } } heap.pop().expect("There is always k-th smallest").0.into() } } #[cfg(test)] mod tests { use super::*; #[test] fn example_1() { assert_eq!( Solution::kth_smallest_prime_fraction(vec![1, 2, 3, 5], 3), vec![2, 5] ); } #[test] fn example_2() { assert_eq!( Solution::kth_smallest_prime_fraction(vec![1, 7], 1), vec![1, 7] ); } }